
SIX-FUNCTOR FORMALISMS

These are lecture notes from Marc Hoyois three lectures on six-functor formalisms during
the 2023 Young Topologists Meeting. Redaction by Léo Navarro Chafloque.

The formalism of six operations germinated in Grothendieck’s mind between 1956 and
1963, as he recalls in Récoltes et semailles.1 This machinery subsumes behaviours of
functorial cohomology theories : these six operations allow to capture different behaviours
concerning cohomology theories, such as analogies of Poincaré duality, base change for-
mulas, and more. In some geometric context and with a functorial type of cohomology in
hand, achieving a six-functor formalism amounts to unleash the full power of cohomology
that one knows from classical topological spaces.

These notes will be divided in three parts (which correspond to the three lectures given
by Marc Hoyois). The first is a presentation of the six-functor formalism for topological
spaces. The second one is of categorical nature and presents a functorial and neat defini-
tion of what is a six-functor formalism. In the last lecture, we introduce motivic spectra
and explain how they provide an universal six-functor formalism for schemes.
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1. Six-functor formalism in the context of topological spaces

In this section, we emphasize that we are taking as our geometric context topological
spaces and continuous maps, not up to homotopy. The main reference for this chapter is
[Vol23a].

1.1. Recollection on Poincaré Duality. The formalism of six operations notably al-
lows to formulate abstractly a “Poincaré duality” type theorem for “smooth objects” in
a given context. Before going into more generality, we recall the most classical Poincaré
duality theorem. We will also use this as an opportunity to review how the notions of
“compact support cohomology” and Borel-Moore homology are defined. This will help us
to built some intuition for the exceptional functors f! and f ! that we will encounter soon.

Theorem 1.1 (Poincaré duality for compact oriented manidolds). Let X be a compact
oriented topological manifold of dimension d. Let A be an abelian group. Then we have
an isomorphism of graded abelian groups

Hd−∗(X,A) ∼= H∗(X,A)

with the singular cohomology with coefficients in A on the left and the singular homology
on the right.

This isomorphism comes from

C∗(X,A)[d] ∼= C∗(X,A)

in D(Z), with singular cochains on the left and singular chains on the right.

Remark. Here, D(Z) denotes the stable ∞-category of HZ-modules in the sense of [HA].
This ∞-category can be understood as the one presented by the model category of chain
complexes of abelian groups with the projective model structure. The isomorphism in the
theorem can be constructed as a quasi-isomorphism of chain complexes.

We will now explain the generalization of this theorem to arbitrary topological mani-
folds, so dropping “compact” and “oriented”.

We will need some preliminary definitions and recolletions.

Definition 1.2 (Local system). Let X be a locally simply-path connected topological
space. A local system on X is a functor

Π1(X)→ Ab .

Remark. Here Π1(X) denotes the fundamental groupoid defined using pointed homotopy
classes of paths and concatenation. For locally simply path-connected spaces this defini-
tion is equivalent to a locally constant sheaf of abelian groups. For more general spaces
than locally simply path-connected spaces, the latter is the correct definition of local
system.

Example-Definition (Orientation double cover). Let X be a topological manifold. Note

by X̃ the two-sheeted orientation cover. (See for example [Hat02] for an explicit construc-
tion). It then corresponds to a functor by the Galois correspondence,

Π1(X)→
{
{a, b}

}
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where
{
{a, b}

}
denotes the full subcategory of Set consisting of the a unique object which

is a set with two elements that we denote a and b. Sending this set to the abelian group
Z by {a, b} 7→ ⟨a, b | ab⟩, we get a local system

Z̃ : Π1(X)→ Ab .

If A : Π1(X)→ Ab is any local system on X, we define Ã to be A⊗ Z̃.

Example 1.3. We have Z̃ ⊗ Z/2Z ∼= Z/2Z. This is because there is only one canonical

generator of Z/2Z. As (−1)(−1) = 1, we have Z̃⊗ Z̃ ∼= Z. A manifold is orientable if and

only if Z̃ is the constant sheaf Z.

We will now define appropriate analogues of chains and cochains with coefficients in
a local system (this is needed for the general statment of Poincaré duality). We fix
a topological manifold X and a local system A : Π1(X) → Ab. These definitions (in
particular with A being constant) are to be remembered as the most “usual case” of the
(co)homologies that we will appear in a general six-functor formalism (namely homology,
cohomology, Borel–Moore homology and compact support cohomology).

Definition 1.4 (Singular chains with coefficients in a local system). Let n ≥ 0. We define
Cn(X,A) to be the abelian group consisting of sums∑

σ : ∆n→X

aσσ

where aσ ∈ A(σ(bar)) and only finitely many terms are non-zero. Here, bar denotes the
barycenter of ∆n. The differential is defined analogously to the usual differential,

∂(aσσ) =
n∑

i=0

(−1)iA(γi)(aσ)d
∗
iσ.

Here, γi denotes the line from the barycenter of ∆n to the barycenter of the i-th face.
This gives a positively graded chain complex C∗(X,A).

Definition 1.5 (Singular cochains with coefficients in a local system). Let n ≥ 0. We
define Cn(X,A) to be the abelian group of functions

φ : Top(∆n, X)→
⊔
x∈X

A(x)

such that for a σ ∈ Top(∆n, X), we have φ(σ) ∈ A(σ(bar)). The co-differential is defined
dually as the case above. We then a get a positively graded cochain complex (negatively
graded chain complex) C∗(X,A).

Remark. If we take A to be a trivial local coefficient system, meaning that the functor has
constant value A ∈ Ab and that all paths are sent to the identity, we get usual singular
chains and cochains complexes.

We now proceed to generalization which are pertinent in the non-compact case.

Definition 1.6 (Borel–Moore singular chains). The chain complex CBM
∗ (X,A) ⊃ C∗(X,A)

is defined using the same definition as above, except that we do not require anymore that
4
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only finitely many aσ are zero, but an element
∑

aσσ ∈ CBM
n (X,A) must satisfy that for

every compact subset K ⊂ X the following set

{σ | aσ ̸= 0 σ(∆n) ∩K ̸= ∅}
is finite.

Definition 1.7 (Compactly supported cochains). The compactly supported singular
chain complex C∗

c (X,A) ⊂ C∗(X,A) is defined as the sub-complex of φ’s such that there
exists a compact subspace K ⊂ X with φX\K = 0.

Remark. When X is compact, these correspond to the notions defined above.

With these definitions in hand, we can formulate the generalization of Poincaré duality.

Theorem 1.8 (Twisted Poincaré duality for arbitrary topological manifolds). Let X be
a topological manifold. Let A a local system on X. We have isomorphisms in D(Z)

C∗
c (X, Ã)[d]

∼−→ C∗(X,A)

and

C∗(X, Ã)[d]
∼−→ CBM

∗ (X,A)

1.2. Grothendieck’s key insight. Grothendieck key idea in his yoga of six operations
is that the fundamental object of a cohomology theory H∗

of some sort(−,−) is some kind of
functorial association

{Geometric context} → Cat∞

of the form

X 7→ {Natural coefficients for H∗
of some sort(X,−)}.

The “functoriality” of this association should be one of the features that a six-functor
formalism encodes.

1.2.1. A list of example of coefficients. We give a list of non-precise examples of “coeffi-
cients” for cohomology theories. We do not claim that every example listed here admits
a six-functor formalism as will be defined later.

Example 1.9. Taking topological spaces as a geometric context, the natural coefficients
for ordinary cohomology of abelian groups is

Sh(X,D(Z)).
So that the fundamental object should be the association

X 7→ Sh(X,D(Z)).
For generalized cohomology theories, the association would then be

X 7→ Sh(X,Sp).

Where Sp stands for the stable∞-category of spectra. In the following subsections, we
will investigate this example.

Remark. Here we use the meaning of sheaves with value in a ∞-category as defined in
[HTT].
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Example 1.10. If we take the category of schemes as a geometric context, and quasi-
coherent cohomology which is a main tool in algebraic geometry, coefficients would be the
stable ∞-category of quasi-coherent sheaves. Therefore the key association would be,

X 7→ Qcoh(X).

See [SchSix, Lecture VIII] for a development on this topic.

Example 1.11. In this example, we record some knowledge from Bhatt’s lecture [PF-G].

• If we take as a geometric context qcqs schemes over a field of characteristic zero,
and de Rham cohomology, the key association should be

X 7→ Crys(X)

where Crys(X) is the category of D-modules. This category can also be realized
as a category of quasi-coherent sheaves on a stack

Qcoh(Xdr)

namely the de Rham stack of X. See for example [PF-G, Chapter 2] or [LuDmod].
See [SchSix, Appendix to Lecture VIII] for a treatment of six operations for D-
modules.
• If we take as a geometric context bounded p-adic formal schemes and syntomic
cohomology, the key association should be

X 7→ F-Gauge∆(X).

This construction is developed at length in [PF-G], and is a more complicated
analogue in mixed characteristic of the picture in characteristic zero and de Rham
cohomology sketeched above. The∞-category F-Gauge∆(X) is also a category of

quasi-coherent sheaves on a stack, which is denoted by XSyn.

Remark. Realizing categories of coefficients as categories of quasi-coherent sheaves on
some algebraico-geometric object place categories of quasi-coherent sheaves in a particular
spot. Examples as above are called geometrizations in [PF-G]. This phenomenon is also
described in [SchSix].2

Example 1.12. We record for example the following which is proposed as an exercise in
[SchSix, Exercise 1.7]. If X is a locally closed subset of Rn, and X denotes the functor on
schemes taking a scheme S to the set of continuous maps |S| → X, then X is a pro-étale
algebraic space and we have

Sh(X,D(Z)) ∼= Dqc(X).

2Citing Scholze: “A curious phenomenon is that in most cases the association X → D(X) can be
factored as a composite Dqc ◦F where the first functor F takes any X ∈ C to some other kind of geometric
object F (X), sometimes a scheme but often rather a stack or even an analytic stack, and the second
functor is the functor of taking the derived category of quasi-coherent sheaves on an analytic stack. This
gives a more geometric perspective on a 6-functor formalisms, as a functor F between different kinds of
geometric objects. ” (End of lecture 1, [SchSix])
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1.3. Some point set topological definitions. In this subsection, we (re)define some
topological notions such as (quasi)-compactness, separatedness, in a categorical way.
These definitions will be familiar for those who know algebraic geometry. One can com-
pare the following definitions to the usual definitions in algebraic geometry, for example
in [Stacks, Chapter 01H8 and Chapter 01QL].

Definition 1.13. Let X and S, S′ be topological spaces and f : X → S is a continuous
map. We say that,

• We say that f is universally closed if ∀S′ → S the pullback map f ′ : X ′ → S′ is
closed.
• We say that f is separated if the diagonal map ∆: X → X ×S X is (universally)
closed.
• We say that f is proper if f is universally closed and separated.
• We say that f is locally proper if ∀x ∈ X and for all neighbourhoods U ∋ x, there
are neighbourhoods A ⊂ U of X and B of f(x) such that f : A → B is a proper
map.
• We say that f is smooth if ∀x ∈ X there is an open neighbourhood U of x and V
of f(x) such that f(U) ⊂ V and

U V ×D

V
f

∼

pr1

for D an open subspace of Rd for some d ≥ 0.
• We say that f is étale if it is a local homeomorphism (smooth of relative dimension
zero).

Remark. These definitions are to be thought as maps such that the fibers are of the
corresponding type from the next definition, who links these notions to usual topological
notions.

Definition 1.14. Let X be topological spaces and f : X → S is a continuous map. We
say that,

• We say that X is quasi-compact if X → ∗ is universally closed. This is equivalent
to usual quasi-compactness by the tube lemma.
• We say that X is Hausdorff if the diagonal map ∆: X → X ×X is separated. It
follows quickly from definitions that this is equivalent to the usual notion.
• We say that f is proper or compact if X → ∗ is proper. This is therefore equivalent
to the usual quasi-compact and Hausdorff definition.
• We say that X is locally proper if X → ∗ is locally proper. If X is in addition
separated, this is equivalent to the usual notion of locally compactness.
• We say that X is a manifold if X → ∗ is smooth.3

Remark. The following implications hold.

• Proper =⇒ locally proper.

3This is more general than the usual notion of topological manifold, which usually requires second
countability and separatedness. However every result exposed in these notes work in this generality.
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• Smooth =⇒ locally proper.
• Every map between locally compact Hausdorff spaces is locally proper and sepa-
rated.

1.4. Six-functor formalism for topological spaces. In this section, we explain the
appropriate functorialities of

X 7→ Sh(X,Sp).

It will serve as an introduction to the six-functor formalism; we will present a formal
development of the latter in the next section. The three following adjoint functors form
the soul of a six-functor formalism.

(1) A map f : X → Y always gives

f∗ : Sh(Y,Sp) Sh(X,Sp): f∗

with f∗ ⊣ f∗. We call this functors pullback and pushforward. The pushforward
is defined by f∗F(U) = F(f−1(U)). The pullback is the unique left adjoint.

(2) If f is locally proper, we have in addition

f! : Sh(X,Sp) Sh(Y, Sp): f !

with f! ⊣ f !. These are called exceptional direct image and exceptional inverse
image. If f is separated, we can define

f!F(V ) = lim−→
K⊂f−1(V )

K→V
proper

FK(f−1(V )),

where if Z ⊂ X closed, we define FZ(U) as the homotopy fiber of

F(U)→ F(U ∩ (X \ Z)).

If f is not separated, we can proceed by descent using locally separatedness.
(3) Sh(X,Sp) is a symmetric monoidal closed ∞-category.

Remark. The six functors are

f∗ ⊣ f∗ f! ⊣ f ! ⊗ ⊣ Hom .

The first adjunction is basic and holds true if we replace Sp by a 1-presentable category
for example. But for f! passing to the ∞-context is essential. Take the compact case
where f! = f∗. Then f∗ will not be cocontinuous if C = Ab – this functor is famously
not right-exact. From the point of view of homological algebra, this is where all the
cohomology comes from, i.e. the default of right-exactness of f∗. This is corrected when
passing to derived categories.

1.4.1. Six-functor compatibilities. These functors also have the following compatibilities,
which are a key part of the six operations. We list them now.

(1) Compatibilty between ∗ and ! Base change formula.
8
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For every f : X → Y locally proper and every cartesian square

X ′ X

Y ′ Y

f ′

gX

f

gY

we have a natural isomorphism g∗Y f! ≃ f ′
! g

∗
X . By adjunction, this is the same as

f !gY,∗ ≃ gX,∗f
′!.

(2) Compatibilty between ∗ and ⊗.
The functor f∗ is symmetric monoidal.

(3) Compatibilty between ! and ⊗. Projection formula.
The functor f! is Sh(Y, Sp)-linear, meaning that the projection formula holds

f!(A⊗ f∗B) ≃ f!(A)⊗B.

Outside of these first key properties we also observe the subsequent properties.

(a) If f is locally proper and separated, there is a natural map

f! → f∗

which is an isomorphism in the case where f is proper.
(b) If j : U → X is étale (for example an open embedding), j! is the extension by zero

functor, and therefore left adjoint to j∗.

In summary, we have the following duality between proper and étale maps.

• For a proper map

f∗ ⊣ f∗ = f! ⊣ f !

• For an étale map

f! ⊣ f ! = f∗ ⊣ f∗

• For a finite étale map (finite covering) we have f∗ = f! and f∗ = f ! with both
functors being right and left adjoint to each other.

For more on how proper and étale are cohomollogically dual, see [SchSix, Lecture VI]

1.4.2. How to express (co)homologies? We will now study the case of f : X → ∗. We want
to now make a link between this formalism and the definitions in the first subsection. For
a locally contractible space X and for a local system A : Π1(X)→ A the sheaf cohomology

f∗A = Γ(X,A) ∈ D(Z)≤0

coincides with the usual singular cochain cohomology defined above

Γ(X,A) = C∗(X,A).

Moreover, definitions below will correspond to the one given above in terms of chains for
a locally contractible space X.

For a symmetric monoidal ∞-category C we denote by Pic(C) the full subcategory of
invertible objects with respect to the monoidal structure. For example if C = Sh(X,D(Z)),
the sheaf Z[d] for any d ∈ Z or the local system Z̃ associated to the orientation double
cover are examples invertible objects. Tensoring by such objects are interpreted as shifts
and twists.

9
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We now define the according generalization of cohomologies presented in the first sube-
section for an arbitrary E ∈ Sp and ξ ∈ Pic(Sh(X,Sp)).

Definition 1.15 ((Co)homologies in a six-functor formalism). Let X be a topological
space and f : X → ∗ denote the unique map to the point. We define

The cohomology of X with coefficients in E twisted by ξ

H∗(X,E, ξ) = Γ(X,E, ξ) = f∗(ξ ⊗ f∗E).

If X is locally proper, we further define the following.
The homology of X with coefficients in E twisted by ξ

H∗(X,E, ξ) = f!(ξ
−1 ⊗ f !E).

The cohomology with compact support of X with coefficients in E twisted by ξ

H∗
c(X,E, ξ) = Γc(X,E, ξ) = f!(ξ ⊗ f∗E).

The Borel–Moore homology of X with coefficients in E twisted by ξ

HBM
∗ (X,E, ξ) = f∗(ξ

−1 ⊗ f !E).

Remark. Let A be a local system onX. The previous definition does not capture homology
and cohomology with coefficients in a local system. We see a local system as locally
constant sheaf of abelian groups and therefore as an object in the heart of Sh(X,D(Z)).
Here is how to define them.

H∗(X,A) := f∗(A⊗ f∗Z) = f∗A cohomology

H∗(X,A) := f!(A⊗ f !Z) homology

H∗
c(X,A) := f!(A⊗ f∗Z) = f!A compact support cohomology

HBM
∗ (X,A) := f∗(A⊗ f !Z) Borel-Moore homology

In the end of this lecture, we explain how known theorems in cohomology of topological
spaces are interpreted in this formalism.

1.4.3. Dualizing sheaf and Serre duality.

Definition 1.16 (Dualizing sheaf). Let f : X → S be a locally proper map of topological
spaces. The sheaf

ωf = f !(1)

is called the dualizing sheaf of f . In the case of f : X → ∗, we write ωX .

In particular, for a compact topological space X, we get for a sheaf F ∈ Sh(X Sp).

f∗Map(F , ωX) ∼= Map(f∗F ,S)
which is a topological version of Serre-duality.

Remark. If X is a manifold of dimension d, then

ωX ⊗ Z ∼= Z̃[d],

where Z̃ is the orientation double cover local system defined above.
10
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1.4.4. Recollement. Let X be a topological space. Denote by U ⊂ X an open subset.
Denote by Z its closed complement. Then we have the following recollement or exact
sequence of stable ∞-categories (see [HA, A.8])

Sh(Z,Sp) Sh(X,Sp) Sh(U,Sp)
ι!=ι∗

ι∗

ι!

j!=j∗

j∗

j!

The additional data in the recollement is detailled in [HA, A.8]. This notably means that
the central category can be reconstructed from the two edge ones.

1.4.5. Künneth formula. Let X be locally proper and Y be an arbitrary topological space.
Then the Künneth formula categorifies to

−⊠− = p∗X(−)⊗ p∗Y (−) : Sh(X,Sp)⊗ Sh(Y,Sp)→ Sh(X × Y,Sp).

being an isomorphism.

1.4.6. Verdier-Lurie duality. See [HA, p. 5.5.5] for a detailed account. Let X be a locally
compact Hausdorff space. Lurie’s version of Verdier duality is a categorified version which
can be expressed as the fact that

Sh(X,Sp)⊗ Sh(X,Sp)
⊗−→ Sh(X,Sp)

f!−→ Sp

is a perfect pairing, and then gives an equivalence D : Sh(X,Sp)→ CoSh(X,Sp).

1.4.7. Relative generalized Poincaré duality. Let f : X → S be smooth. Then the relative
generalized version of Poincaré duality can be expressed as that the natural map4

ωf ⊗ f∗ → f !

is an isomoprhism, together with the fact that ωf is invertible. In words, and in relation
with definitions in the case of the point, this isomorphism relates Borel–Moore homology
and a twisted and shifted version of the cohomology. Note that theorem 1.8 follows
from this isomorphism using the interpretation of these (co)homologies in this six-functor
formalism.
Proof sketch. By definition, a smooth map is locally on the source of the form

X × Rn → X.

Using descent and Künneth formula, one then reduces to prove Poincaré duality in the
case of

f : R→ ∗.
A key fact here is the homotopy invariance of cohomology interpted as

p∗ : Sh(X,Sp)→ Sh(X × R, Sp)

being fully-faithful. See [HA, Appendix A.2]. In particular we only need [HA, Lemma
A.2.2] here.

4Using adjunction and the projection formula f!(f
!
1 ⊗ −) = f!f

!
1 ⊗ −, it comes from the co-unit

f!f
!
1⊗− → −.

11
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Let E ∈ Sp. First note that

f !E(R) = Map(1, f !E)

= Map(f!1, E)

= Map(Γc(R, S), E).

We now compute Γc(R,S) = f!1.

Γc(R, S) = lim−→
[−r,r]⊂R

fib(Γ(R,S)→ Γ(R \ [−r, r], S))

= lim−→
[−r,r]⊂R

fib(S ∆−→ S⊕ S)

= fib(S ∆−→ S⊕ S)
= ΩS.

We claim that ωR = S1 = ΣS. We show that this is the case on global sections.

f !
1(R) = Map(1, f !

1)

= Map(f!1,S)
= Map(ΩS,S)
= ΣS.

Now we want to compare f !E(R) to (f∗E ⊗ ωR)(R) = (f∗ΣE)(R). We have

f∗ΣE(R) = Map(1, f∗ΣE)

= ΣE (by homotopy invariance)

= Map(ΩS, E).

Therefore f !E and f∗E ⊗ ωR agree on global sections.

1.4.8. Atiyah duality. Let X and Y be C1 manifolds. Let f : X → Y be a C1-submersion.
Then we can refine Poincaré duality specifying that

ωf
∼= STf ,

where STf denotes the fiberwise one point compactification of the realtive tangent space
Tf → X. Therefore, we get a sphere-bundle on X. Looking locally at the associated
pointed anima and then the associated spectra defines a sheaf of spectra on X, that we
denoted by STf .

1.4.9. Lefschetz-Hopf trace formula. Let X be a compact C1-manifold, f : X → X a
C1-map with isolated fixed points. Then∑

i

(−1)iTr(fHi(X,Q)) =
∑

x∈Fix(f)

sgn(det(id−Txf)).

This formula was one of Grothendieck’s motivation to develop a six-functor formalism for
schemes. Namely for f = F being the Frobenius endomorphism this formula along with
Poincaré duality would imply the first two of Weil conjectures.

12
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2. Categorical aspects

In this lecture we will expose how to express in a compact way all functorialities and
fundamental properties of six-functor formalisms that we encountered in the context of
topological spaces, leading to a formal definition of the latter.

References for this lecture are [Man22, Appendix A.5], Scholze exposition of Mann’s
approach in [SchSix] and the work of Gaitsgory and Rozenblyum in [GR17, Part III], in
particular for the (∞, 2)-point of view. What we call here categories of spans are also
called categories of correspondences in the above references.

2.1. Categories of spans. Let C be an ∞-category with finite products. In the context
of the upcoming definition of six-functor formalisms, this category is to be thought as
a geometric context. Denote by L and R (for left and right) classes of morphisms of C
closed under composition, base change and contain all isomorphisms.

Informally SpanL,R(C) is the∞-category whose objects are objects of C and morphisms
between X and Y are given by spans

Z

X Y

L R

where the right arrow is in R and the left one is in L. The composition of two arrows is
given as the big triangle in the diagram below.

Z ×Y W

Z W

X Y T

Note that we use the stability by base change and composition of L and R here. Note also
that even in the case where C is an ordinary 1-category, SpanL,R(C) is a (2,1)-category
because pullbacks are only defined up to natural isomorphisms.

This is maybe enough for intuition, and also for the case where C is an ordinary 1-
category, but we will explain the how to define precisely the ∞-category SpanL,R(C),
because we want to treat the case where C is an ∞-category. Seeing

Cat∞ ⊂ Fun(∆op,Ani)

as complete Segal anima will be helpful.
In what follows we denote by Tw the twisted arrow construction, see for example [Ker,

Tag 00AZ]. The only thing that we will use is that Tw(∆n) is the category of pairs
{(i, j) ∈ [n] × [n] | i ≤ j} with arrows between (i, j) → (k, l) if and only if i ≤ k and

13
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j ≥ k. For n = 2 we get the poset

(0, 2)

(0, 1) (1, 2)

(0, 0) (1, 1) (2, 2)

The picture for a general [n] is the obvious generalization of such a triangle of arrows.
Accordingly to this picture, we will call an arrow (i, j)→ (i, j′) a left arrow and an arrow
of the form (i, j)→ (i′, j) a right arrow. We also therefore call a minimal square a square
of the form

(i, j)

(i, j − 1) (i+ 1, j)

(i+ 1, j − 1)

Definition 2.1 (∞-categories of spans). Let C be a category with finite products and L
and R as above. The (∞, 1)-category SpanL,R(C) is the complete Segal anima defined by

[n] 7→ FunL,R,cart(Tw(∆
n), C) ⊂ Fun(Tw(∆n), C)

where FunL,R,cart(Tw(∆
n), C) consists of functors

• which send left arrows to arrows of L and right arrows to arrows of R and
• send minimal squares to pullbacks.

Remark. We make some basic remarks about the category of spans.
The ∞-category SpanL,R(C) has a symmetric monoidal structure defined by X ⊗ Y =

X × Y .
We have canonical functors C → SpanL,All(C) defined by

X

(X → Y ) X Y

and Cop → SpanAll,R(C)

X

(X → Y ) Y X.

14
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Also, any morphism can be canonically decomposed as composition of a morphism in the
image of Cop and then by a morphism in the image of C, as follows.

Z

Z Z

X Z Y

f g

Therefore, we already begin to see how the category of spans helps to encode a functorial
data which contains both covariant and contravariant information.

In what follows we will denote by SpanR(C) = SpanAll,R(C).

Remark. The following flow of remarks will seem trivial, but they will allows us to see how
the soon to be defined very concise notion of six-functor formalism captures the tensor
product and the projection formula.

Note that in (Cop,×) any object is an E∞-algebra with the diagonal. Note also that
Cop → SpanAll,R(C) is symmetric monoidal by definition. Therefore any X ∈ SpanR(C) is
an E∞-algebra in SpanR(C) with respect to “the law”

X

X ×X X.

∆

Moreover, if f : X → Y is also in R, the fact that the following

X Y

Y ×X Y × Y

f

f×id ∆

id×f

is always a pullback square implies that the morphism

fR =

X

X Y

f

is a morphism of Y -module in SpanR(C).

Remark. Note that if the following diagram

X Y

X ×X Y × Y

f

∆ ∆

f×f

is a pullback (this is the case if and only if f is a monomorphism), then fR is a morphism
of non-unital algebras. (In the upcoming context of a six-functor formalism it means that
under this hypothesis f!(A⊗B) ∼= f!A⊗ f!B.)

15
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2.2. Formal definition of six-functor formalisms. With this language setup and
these few remarks we are now able to get the neat definition we were announcing.

Definition 2.2 (3-functor formalism). A 3-functor formalism on (C, R) as above is a
right-lax symmetric monoidal functor

D : SpanR(C)→ Cat∞ .

We let the reader appreciate how concise the definition is. Note that stating this in
the context of ∞-categories encodes all the wanted higher coherences. Moreover, let us
unwind how we relate this definition to the six-functor formalism that we saw in the
context of topological spaces.

• Of course, for an object X ∈ C, the ∞-category D(X) is to be interpreted as the
category of coefficients of the incarnation of cohomology that we want to encode.
• Pullback. For a morphism f : X → Y in C, we define f∗ : D(Y ) → D(X) as the
image of

X

Y X

f

• Exceptional direct image. For a morphism f : X → Y in R, we define f! : D(Y )→
D(X) as the image of

X

X Y

f

Therefore the class R is to be interpreted as the analogue of locally proper maps
in the topological context, or at least the class of maps where f! is defined.
• The functor D therefore sends a general morphism in SpanR(C)

Z

X Y

f g

to g!f
∗ : D(X)→ D(Y ).

• Base change formula. Let f : Z → X a morphism and g : Z → Y a morphism in
R. The following composition of arrows in SpanR(C)

Z ×Y X

Z X

Z Y X

f ′ g′

g f

and the functoriality implies the base change formula f∗g! ∼= g′!f
′∗.

16
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• Tensor product. Note that we have not yet used the right-lax symmetric monoidal
assumption on D. This comes now. Namely, as we have noticed above, any object
in SpanR(C) is canonically an E∞-algebra with the diagonal. Therefore the right-
lax symmetric structure implies that any D(X) is a symmetric monoidal category.
Explicitly,

−⊗− : D(X)×D(X)
laxX,X−−−−→ D(X ×X)

∆∗
−−→ D(X).

The unit is an object 1 : ∗ → D(∗) and for every object p : X → ∗ the unit in
D(X) is p∗1. Note that we can express a posteriori the lax-structure as (A,B) 7→
A⊠ B := p∗XA⊗ p∗Y B. This follows from the naturality of the lax-structure with
the following diagram.

D(X)×D(Y ) D(X × Y )

D(X × Y )×D(X × Y ) D(X × Y ×X × Y )

D(X × Y )

(p∗X ,p∗Y )

laxX,Y

(pX×pY )∗

laxX×Y,X×Y

−⊗− ∆∗

• Pullback is symmetric monoidal. It is also consequence of the right-lax symmetric
monoidal structure because

Cop → SpanR(C)
D−→ Cat∞

is a composition of a symmetric monoidal functor and a right-lax symmetric one.
• Projection formula. Let f : X → Y be a morphism in R. Note that D(X) is a
D(Y )-module using f∗. Moreover, we also explained in the remark preceding the
definition that

X

X Y

f

is a morphism of Y -module in SpanR(C). Therefore, as before the compatibility
with the monoidal structure imposed implies that f! is D(Y )-linear.

We can now define a six-functor formalism, as a condition on a 3-functor formalism.

Definition 2.3 (6-functor formalism). A 6-functor formalism on (C, R) is a 3-functor
formalism

D : SpanR(C)→ Cat∞

such that

(1) for each object X ∈ C the symmetric monoidal category D(X) is closed,
(2) for each map f : X → Y , the functor f∗ : D(Y )→ D(X) is a left adjoint and
(3) for each map f : X → Y , the functor f! : D(X)→ D(Y ) is a left adjoint.

Remark. We denote by PrL∞ the ∞-category of presentable ∞-categories. In PrL∞ we
consider only functor that are left adjoints. See [HTT, section 5.5] for a detailed account
on the subject. We recall that a commutative monoid in PrL∞ with respect to the Lurie

17
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tensor product is a presentable symmetric monoidal closed ∞-category. We denote by
PrL∞ the associated ∞-category. We simply remark that a 6-functor formalism on (C, R)
with value in presentable ∞-categories is then simply a right-lax symmetric monoidal
functor

SpanR(C)→ PrL∞,

making in this case the definition even more concise.

2.2.1. Künneth formula. We say that D satisfies Künneth formula for X,Y ∈ C if the
lax-structure laxX,Y is an isomorphism. Note that in the case where D takes value in
Pr∞ as in the previous remark, the lax monoidal structure is the Lurie tensor product
and the Künneth formula happens in this setting.

2.2.2. Verdier duality. In this remark, we explain how to express Verdier duality in the
formalism and how it interchanges ! and ∗. For an object X, such that pX : X → ∗ is in
R, the Verdier dual functor is defined to be DX : D(X)→ D(X)op

A 7→ Hom(A, p!X1)

where Hom is here used to designate the mapping object from the cartesian closed struc-
ture. We now show that for f : X → Y in R and Y → ∗ in R, we have a natural
isomorphism

DY f! ∼= (f∗)
opDX .

Proof. Let A ∈ D(X) and B ∈ D(Y ). Using adjucntions and projection formula we get

MapD(Y )(B, f∗Hom(A, p!X1))
∼= MapD(∗)(pX,!(f

∗B ⊗A),1) ∼= MapD(∗)(pY,!(B ⊗ f!A),1).

But also

MapD(Y )(B,Hom(f!A, p
!
Y 1))

∼= MapD(Y )(B ⊗ f!A, p
!
Y 1)
∼= MapD(∗)(pY,!(B ⊗ f!A),1).

□

We say that Verdier duality holds for A ∈ D(X) if the natural map

A→ D2
X(A)

is an equivalence. For X = ∗, objects where Verdier duality holds are precisely dualizable
objects. For sheaves on stratified spaces, Verdier duality holds for constructible sheaves.
See [Vol23b].

2.2.3. Poincaré duality. Let f : X → Y be a map in R. Then note that from the co-unit
f!f

! → id, we get using the projection formula a natural transformation

f!(f
!
1⊗ f∗−) = f!f

!(1)⊗− → −.
By adjunction we get a Poincaré comparaison natural map

f !
1⊗ f∗ → f !.

We write ωf = f !
1. Following [SchSix, Lecture V] we say that Poincaré duality holds for

f if

(1) the above Poincaré comparaison natural map is an isomorphism,
(2) the object f !

1 is invertible,
18
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(3) for every map g : Y ′ → Y , if f ′ denotes the base change of the map the f then
property (1) and (2) also holds for f ′ and the natural map

g′∗ωf → ωf ′

is an isomorphism.

With respect to a six-functor formalism D on C, Scholze [SchSix, Lecture V] calls such
maps D-cohomologically smooth.

2.2.4. Associated (co)homologies to a six-functor formalism. We briefly explain how to
retrieve (co)homology from a six-functor formalism

D : SpanR(C)→ Cat∞

as defined above.

(1) The Y -relative cohomology of X
f−→ Y with coefficients in A ∈ D(Y ) is

H∗
Y (X,A) := f∗f

∗A.

(2) If f : X → Y is in R, the Y -relative homology of X
f−→ Y with coefficients in

A ∈ D(Y ) is

H∗,Y (X,A) := f!f
!A.

(3) If f : X → Y is in R, the Y -relative compact support cohomology of X
f−→ Y with

coefficients in A ∈ D(Y ) is

H∗
c,Y (X,A) := f!f

∗A.

(4) If f : X → Y is in R, the Y -relative Borel–Moore homology of X
f−→ Y with

coefficients in A ∈ D(Y ) is

HBM
∗,Y (X,A) := f∗f

!A.

Furthermore, we can encode the following functorialities. Let

X X ′

Y

f

g
h

be a commutative diagram.

(5) Fixing A ∈ D(Y ), we get a functor

H∗
Y (−, A) : C

op
/Y → D(Y ).

For f : X → X ′ in C/Y the unit 1→ f∗f
∗ induces the contravariant functoriality

of cohomology
h∗h

∗ → g∗g
∗ = h∗f∗f

∗h∗.

(6) Fixing A ∈ D(Y ), we get a functor

H∗,Y (−, A) : C/Y → D(Y ).

For f : X → X ′ in C/Y the counit f!f
! → 1 induces the covariant functoriality of

homology
g!g

! = h!f!f
!h! → h!h

!.
19
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2.3. Examples of six-functor formalisms. In what follows we record a few examples
of six-functor formalisms.

2.3.1. Topological spaces and generalized cohomology theories. If A is a stable bicomplete
category (for example A = Sp) then with C being locally compact Hausdorff spaces and
R =All,

X 7→ Sh(X,A)
is a six-functor formalism. See [Vol23a] for a detailled account. Taking A = Sp we get
that this formalism of six operations is the formalism associated to generalized cohomology
theory of topological spaces.

2.3.2. Non-abelian cohomology of anima. For C = Ani and R =All, the following

X 7→ Ani/X ∼= Fun(X,Ani)

is a six-functor formalism. Namely for f : X → Y

Ani/X Ani/Y
−×Y X

so that f∗ = f ! is the pullback (this is consistent with the fact that every morphism
is étale in Ani). The base-change of formula is easily verified. The left adjoint to the
pullback is simply the forgetful functor. Note that the fact that − ×Y X is also a left
adjoint follows from the fact that colimits are universal and the adjoint functor theorem.

In the case that Y = ∗ this right adjoint is simply MapAni/X
(X,−). In this 6-functor

formalism, for A ∈ Ani the homology of X with coefficients in A is

X ×A

and the cohomology of X with coefficients in A is

Map(X,A).

2.3.3. Parameterized spectra (Genralized cohomology for anima). Again for C = Ani and
R =All but this time with parameterized spectra as coefficients.

X 7→ Fun(X,Sp).

This is the is the six-functor formalism of generalized cohomology theories for anima.
Again f∗ = f! for every morphism f . The case of the point can be phrased as

Fun(X,Sp) Sp

lim−→

lim←−
cst

Therefore in this six functor formalism, for E ∈ Sp the homology of X with coefficients
in E is

Σ∞
+ X ⊗ E

and the cohomology of X with coefficients in E is

Map(Σ∞
+ X,E).
20
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2.3.4. Étale cohomology with (pro-)finite coefficients. For C = Sch and R =morphisms
locally of finite type, the following

X 7→ Shét(X,D(Z)tor)
extend to a six-functor formalism. The category D(Z)tor is the full subcategory of D(Z)
which is the kernel of rationalization. This is the six-functor formalism for étale coho-
mology with finite coefficients. See for example [SchSix, Appendix to Lecture VII]. This
theory was first developed in [SGA4]. Taking an inverse limit of cohomology as cap-
tured in this formalism lead to the first definition of the so called l-adic cohomology. If
f : X → Spec(k) for k an algebraically closed field,

H∗
l−adic(X,Ql) ∼= (lim←−

n

f∗f
∗Z/lnZ)[

1

l
].

Remark. In this remark, we outline a possible non-abelian cohomology of ∞-topoi and
it’s basic properties. We have not verified the validity of the base change formula in this
setup. Let C = T op be the ∞-category of ∞-topoi. What follows is a generalization of
the example with relative anima.

We say that a geometric morphism f : X → Y is an essential geometric morphism if f∗

admits a left adjoint f!. We want to take as coefficients T op → Cat∞ the infinity topos
itself

X → X
with R being essential geometric morphisms, and f∗ = f ! for every such morphism.
Therefore essential geometric morphisms may play the role of étale morphisms. In the
case of π : X → ∗ being essential, we call

π!1 : = Π∞X ∈ Ani

the shape of X or the étale fundamental ∞-groupoid of X5. We Let A ∈ Ani. The
homology of X with coefficients in A would be

π!π
∗A = π!π

∗ lim−→
A

∗ ∼= lim−→
A

Π∞X = A×Π∞X .

Note that from a topos theoritic point of view Fun(A,Ani) ∼= Ani/A is the classyfing topoi

βA of A6. We can express what would be the cohomology of X with coefficients in A as

π∗π
∗A = MapX (1, π

∗A) = Map(Π∞X , A) = FunT op(X , βA)

For more on this subject and how shape theory generalizes Galois theory see [Hoy17].
One would also be more likely to try to approach such a development with stable

coefficients
Sp(X ) = X ⊗ Sp

or more generally X ⊗ A for any stable and bi-complete ∞-category A in the spirit of
[Vol23a]. In this context, we note that the notion of proper morphism of ∞-topoi [HTT,
Section 7.3.1] could be pertinent in the development of such a 6-functor formalism, as

5This last name is motivated because this is a direct generalization of Grothendieck definition of étale
fundamental group. It is constructed to be the homotopy type classifying torsors with constant coefficients.

6In the case where A is BG for G a discrete group, this is the ∞-toposic analogue of the classyfing
topos of G.
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base change formula will hold basically by definition. The notion of étale morphism of
∞-topoi seems also the correct one. It remains to be seen for which class of morphisms
R of ∞-topoi each f ∈ R can be written as a composition of an étale morphism and a
proper morphism.

2.4. 2-categories of spans. For now, we have not been able to capture in the formalism
classes of étale and classes proper maps, which should have a very important role to play.
In order to address this, we will a 2-categorical version of the categories of spans.

Let now be C be a category with finite limits with L and R as above, but also two
new classes, U and D (for up and down) which satisfy same requirements as the classes
L and R, and additionally the 1st out of 3 property. This is not strictly required for the
definition, but it will be for the main use that we will do of this construction, namely in
2.4.1, see below.

Definition 2.4 (1st out of 3). A class M of morphisms which is stable by composition
is said to have the 1st out of 3 if for any f and diagram of the form

M

f

M

then f ∈M .

The following is an informal description of an (∞, 2)-category as an enriched (∞, 1)-
category in (∞, 1)-categories. These (∞, 2)-categories of spans can be formally described
as a 2-fold complete Segal anima, see for example [Hau17].

Definition 2.5 (2-category of spans). Let (C, L,R, U,D) as above. The 2-category of

spans SpanU,DL,R(C) is the (∞, 2)-category with objects the same objects as C and (∞, 1)-

category of morphisms being the full subcategory SpanU,D(C/(X×Y )) such that morphisms
to X are in R and morphisms to Y are in L.

Note that the objects of SpanU,D(C/(X×Y )), which are equal to objects of C/(X×Y ), are
indeed pair of morphisms

Z

X Y

f g

The data of a 2-morphism between two correspondences

Z1 Z2

X Y X Y

l1 r1 l2 r2
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is then given by a correspondence Z1
u←− Z3

d−→ Z2, with u ∈ U and d ∈ D that can be
depicted as

Z1

X Z3 Y

Z2

l1 r1

d

u

l2 r2

with composition being composition of correspondences. Note that if C is an ordinary
category (which is a pertinent case), we just defined a 2-category.

2.4.1. Encoding adjunctions requirements. Recall that we are defining this in order to try
to add to the formalism classes of maps that behaves as proper and étale maps. Recall
that the philosophy is that

• for a proper map

f∗ ⊣ f∗ = f! ⊣ f !

• and for an étale map

f! ⊣ f∗ = f ! ⊣ f∗.

The most important input is that this additional 2-categorical data will allow us to for-
mulate when f∗ admits as a right adjoint f! (meaning that f∗ = f!, the “proper” case),
and dually allows us to formulate when f! admits f∗ as a right adjoint (meaning that

f∗ = f !, the “étale” case). Suppose that U ⊂ R. The key fact is that in SpanU,isoAll,R(C), for
f : X → Y in R, morphisms

fL :

 X

Y X

f

 fR :

 X

X Y

f


are adjoint7

fL ⊣ fR.

The co-unit fL ◦ fR → idX being the 2-morphism

X ×Y X

X X X

X

∆

7There is a general notion of adjuction in a 2-category, see for example [SchSix, Definition 5.8]
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and the unit idY → fR ◦ fL being the 2-morphism

Y

Y X Y

X

f

f f

Note that we used the 1st out 3 property to ensure that the diagonal is in U . Recall
now that in the formalisation of 6-functor formalisms above, fL is what ends up being
sent to f∗ and fR is sent to f!. What we need to remember is that this new 2-categorical
data on correspondences will allows us to force morphisms in the class U to have the
property that f∗ = f !. So that the class U will end up being what will play the role of
proper morphisms.

Note that a dual discussion implies that the classD will play the role of étale morphisms.
Crucial parts of the above explanation is contained in the following proposition.

Proposition 2.6 (Universal property of SpanR,iso
All,R(C). [GR17, Chapter 7, theorem 3.2.2]).

Suppose that we are in the context that we made precise at the beginning of the section.
Let D be an (∞, 2)-category. Then the functor

Fun(SpanR,iso
All,R(C),D)→ Fun(Cop,D)

is fully-faithful at the level of maximal subgroupoids of these functor categories. The image
consists of functors such that ∀f ∈ R we have that f∗ has a right adjoint f!, compatible
with base change, meaning that for any cartesian diagram

X ′ X

Y ′ Y

f ′

gX

f

gY

then g∗Y f!
∼= f ′

! g
∗
X .

The base change result comes from the definition of the composition of correspondences.
The universal property with the existence of adjoints comes from the explanation above
and the fact (∞, 2)−functors preserves adjunctions.

Remark. There is a dual statement involving down morphisms.

2.5. Enhanced 6-functor formalisms. In practice, to show the existence of the excep-
tional functor f!, we use existence of compactifications. A compactification for f : X → Y
in R is a factorization

X X

Y
f

j étale

p proper
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The philosophy is that for both étale and proper maps we usually know the existence of
this exceptional functor and its desired properties, and a posteriori,

f! ∼= p!j! = p∗j!

would necessary hold.
In what follows we will change the notation for the class U and denote it by P and

call it proper maps. Similarly we will change the notation for the class D and denote it
by E and call it étale maps. The following expected theorem8 subsumes why this (∞, 2)-
category of spans provides the possibility to enhance six-functor formalisms by including
étale and proper data.

Expected Theorem 2.7 (Gaitsgory, Rozenblyum). Let (C, R, P,E) as above with P,E ⊂
R. Suppose that every morphism in P ∩E is n-truncated for some n ≥ −2. Assume also
that E and P satisfy the 1st out of 3. If for every f : X → Y in R, the ∞-category

Comp(f) =


X X

Y
f

j étale

p proper


is non-empty, then for every (∞, 2)-category D the functor

Fun(SpanP,ER (C),D)→ Fun(Cop,D)
is fully-faithful at the level of maximal subgroupoids of these functor categories. The image
consists of functors such that

• for every p ∈ P , p∗ has a right adjoint p!, compatible with base change9

• for every j ∈ E, j∗ has a left adjoint j!, compatible with base change,
• For every cartesian diagram of the form

p′

j′

p∈P

j∈E

we have j′!p!
∼= p′!j!.

Remark. One can compare the assumptions of the above theorem on classes E and P
with Mann’s notion of suitable decomposition [Man22, Definition A.5.9].

We can now define a notion of six-functor formalism who takes into account proper
and étale morphisms.

Definition 2.8 (Enhanced 3-functor formalism). Let (C, R, P,E) with the same hypoth-
esis as in the Expected Theorem 2.7. An enhanced 3-functor formalism is a right-lax
symmetric monoidal functor

SpanP,ER (C)→ Cat∞
where Cat∞ denotes the (∞, 2)-category of (∞, 1)-categories.

8The expected theorem 2.7 relies on some (∞, 2)-categorical facts that still need to be proven. Partials
versions of 2.7 is [GR17, Chapter 7, Theorem 4.1.3, Theorem 5.2.4]. See also [LH, Remark 4.2.5]

9So in this case we may write p! = p∗
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Definition 2.9 (Enhanced 6-functor formalism). Let (C, R, P,E) with the same hypoth-
esis as above. An enhanced 6-functor formalism is a enhanced 3-functor formalism

D : SpanP,ER (C)→ Cat∞

such that

(1) for each object X ∈ C the symmetric monoidal category D(X) is closed,
(2) for each map f : X → Y , the functor f∗ : D(Y )→ D(X) is a left adjoint and
(3) for each map f : X → Y , the functor f! : D(X)→ D(Y ) is a left adjoint.

Note that we can replace (3) by

(3)’ for each map f : X → Y in P , the functor f! : D(X)→ D(Y ) is a left adjoint.

Indeed if f = p ◦ j with p ∈ P and j ∈ E, then f ! = j∗p!.

2.5.1. Separated and unramified maps. Suppose that D is an enhanced six-functor for-
malism on (C, R, P,E). Define the class S (for separated) of morphisms X → Y in C
such that the diagonal ∆ : X → X ×Y X is in P . If P are proper morphisms in the
context of topological spaces or schemes, this corresponds to the right notion of separated
morphisms. Then the following two cell

X ×Y X

X X X

X

p1 p2
∆

gives a natural 2-morphism f∗f! ∼= p2,!p
∗
1 → id, (where we used base change formula) so

by adjunction we get a natural morphism

f! → f∗.

Note that if f is proper, then the above 2-morphism is the co-unit of an adjunction, the
unit being (this is the same as in section 2.4.1)

Y

Y X Y

X

f

ff

implying that f! is the right adjoint to f∗ and that the above constructed f! → f∗ map is
an isomorphism.

Dually we may define a class U (this time for unramified) of morphisms such that the
diagonal is étale. In this case we have a natural morphism id→ f∗f

! so a by adjunction
a natural morphism, which will be an isomorphism if the map is étale,

f∗ → f !.
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In the context of topological spaces, if the diagonal of X → Y is open, this exactly means
that for every x ∈ X there is an open neighbourhood U of x with f|U injective, so a
local injection. In algebraic geometry this coincide with the usual notion of unramified
morphism.

2.5.2. Open and closed maps. Note that given a context (C, R, P,E) as above it is legiti-
mate to define two classes C (for closed) and O (for open) of morphisms as respectively
the classes of monomorphisms in P and E. Again in the context of topological spaces or
schemes it coincides with the usual notions of closed and open immersions.

2.5.3. Functorialites of compact support cohomology and Borel–Moore homology. The ad-
ditionnal data of the two-cells relating correspondences with proper and étale maps allows
to encode the bivariant functoriality of compact support cohomology and Borel–Moore
homology. Let

X X ′

Y

f

g
h

be a commutative diagram. We see the following.

(1) Compact support cohomology is contravariant with respect to proper maps. If f
is proper, we have

h!h
∗ → g!g

∗ = h!f!f
∗h∗ = h!f∗f

∗h∗

using the unit 1 7→ f∗f
∗. This also summarized in the data of the following

two-cell.

X ′

Y X Y

X

h hf

g g

(2) Compact support cohomology is covariant with respect to étale maps. If f is
étale, we have

g!g
∗ = h!f!f

∗h∗ = h!f!f
!h∗ → h!h

∗

using the counit f!f
! 7→ 1. This also summarized in the data of the following

two-cell.

X

Y X Y

X ′

g g

f
h h

The following is dual.
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(3) Borel–Moore homology is covariant with respect to proper maps. If f is proper
we have

g∗g
! = h∗f∗f

!h! = h∗f!f
∗h∗ → h∗h

∗

using the counit f!f
! → 1.

(4) Borel–Moore homology is contravariant with respect to étale maps. If f is étale
we have

h∗h
! → g∗g

! = h∗f∗f
!h! = h∗f∗f

∗h!

using the unit 1 7→ f∗f
∗.

Remark. Note that if we define finite étale to be proper and étale, then these (co)hmological
notions are both covariant and contravariant with respect to finite étale maps. Note that
in the topological case a map is finite étale if and only if it is a finite covering.

We also see, still in the topological realm say, that there is an exceptional covariant
functoriality of cohomology for a local homeomorphism between compact spaces, and
dually an exceptional contravariance for homology in the same case.
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3. Motivic spectra and motivic six-functor formalism for schemes

In this lecture, we will introduce motivic spectra. References are Morel and Voevodsky
[MV99] and also Cisinski and Déglise [CD19]. We will also explain how these motives are
coefficients for an universal (in a sense that we will make precise) cohomology theory for
schemes in the context of a general formalism of six-functor formalism for schemes. This
was exposed by Ayoub in [Ayo07a] and [Ayo07b].

The formalism of six operations was first envisioned by Grothendieck in the context
of l-adic étale cohomology for schemes as a way to address Weil conjectures. Namely
the étale analogue of the Lefschetz trace formula and Poincaré duality would directly
respectively imply the first (rationality) and the second one (functional equation). The
key input of Grothendieck was that the Zeta-function of Weil conjectures was a shadow
of the behaviour of cohomology theories for schemes.

In algebraic geometry, there are many cohomology theories, l-adic ones, one for each
l, crystalline cohomology, de Rham cohomology. . . Grothendieck envisioned universal
coefficients which would dictate every other cohomology theory for schemes. Namely,
Grothendieck’s idea was that of an initial functor Mot: Schopk → Mot(k), (the associated
motive) where Mot(k) should be an abelian category, such that for any “cohomology
functor” h∗ : Schk → A for an abelian category A, the there should be a factorization

Schopk A

Motk

h∗

Mot

Motivic cohomology is the name of the Ext-groups from this conjectural abelian cate-
gory of motives. Even though Grothendieck saw that some results on these conjectural
motives could imply the last and most difficult part of Weil conjectures, he was more so
interested by the development of the theory of motives themselves which he saw as “his
most profound contribution to the mathematics of his time” [Gro22, p. 156].

With A1-homotopy theory, Morel and Voevodsky [MV99] introduced the so called de-
rived category of motivic spectra, which is close in spirit to the initial character of motives
described above. Namely the association X 7→ MSp(X) extend to a six-functor formalism
which is initial with respect to all six-functor formalisms which satisfy a set of axioms
that we will explain.

Motivic spectra should be universal coefficients for cohomology theories on schemes,
a role played by shaves of spectra in the context of topological spaces. Here are some
analogies.

Topological spaces Schemes
Proper/smooth/étale Proper/smooth/étale
locally proper locally of finite type=lft
Sh(X,Sp) Motivic spectra MSp(X)
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3.1. Six-functor formalisms for schemes–Ayoub’s axioms. We first present the
following result due to Ayoub. Axioms mentioned in the theorem below will be explained
in the rest of this subsection.

Theorem 3.1 (Ayoub, after Voevodsky, Röndigs). Let

D : Schop → CAlg(PrL∞)

satisfying Ayoub’s axioms (see below). Then D extends uniquely to an enhanced 6-functor
formalism

D : Spanproper, étalelft → PrL∞

in which Atiyah duality holds; namely there exist a symmetric monoidal functor10

(K(X),+)→ (Pic(D(X)),⊗)

such that if f : X → Y is smooth then the natural map

ωf ⊗ f∗ → f !

is an isomorphism, with ωf := f !
1 ∼= STf . Here Tf is the relative tangent bundle Ω∨

X|Y .

3.1.1. Ayoub’s axioms. We list now the axioms mentionned in the above theorem. These
axioms are meant to formulate what should be a cohomology theory for schemes in the
language of six-operations.

(1) Zariski descent. The functor D is a sheaf for the Zariski topology on Sch.
(2) Smooth base change. For every smooth map f : X → Y , the functor f∗ has a left

adjoint f♯ such that for all cartesian squares

X ′ X

Y ′ Y

f ′

gX

f

gY

the natural map g∗Y f♯ → f ′
♯g

∗
X is an isomorphism and a smooth projection formula,

for A ∈ D(Y ) and B ∈ D(X) the natural map

A⊗ f♯B → f♯(f
∗A⊗B)

is an isomorphism.
(3) Localization. Let ι : Z → X a closed embedding with open complement j : U → X.

Then (ι∗, j∗) is conservative and ι∗, j∗ are fully faithful.
(4) A1-homotopy invariance. Let

p : X × A1 → X

the projection. Then p∗ is fully-faithful.
(5) P1-stability. Let s : X → X × A1 the zero section. Then

p♯s∗ : D(X)→ D(X)

is an equivalence.

10This functor should be thought as sending a vector bundle to the associate sphere bundle.
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Remark. The localization amounts to a recollement if the functor D takes value in stable
∞-categories.

Remark. We explain what is the functor f♯ a posteriori (supposing D fits in a 6-functor
formalism). For a smooth morphism f : X → Y ,

(a) Poincaré duality should hold, meaning f ! ∼= ωf ⊗ f∗,
(b) the dualizing complex ωf should be invertible and
(c) the dualizing complex should respect base change.

Note that then f∗ ∼= f ! ⊗ ω−1
f . And for A ∈ D(X) and B ∈ D(Y )

MapD(X)(A, f
!B ⊗ ω−1

f ) ∼= MapD(X)(A⊗ ωf , f
!B) ∼= MapD(Y )(f!(A⊗ ωf ), B).

In other words, f♯ = f!(−⊗ωf ). Now, one sees that under listed above three assumptions

on smooth morphisms11 the base change formula and the projection formula holds for f♯
if and only if it holds for f!.

Remark. It is unclear for now why the fifth axiom is called P1-stability. We will see that
it actually implies in the case of motivic spectra that P1

X is invertible with respect to ⊗,
which will imply the stability of the category. This is an analogue in the topological case
to the fact the S1 is invertible in (Sp,⊗), which amounts to Σ being an equivalence, so
stability.

Here’s an existence theorem about the initial six-functor formalism for schemes who
satisfies Ayoub’s axioms.

Theorem 3.2 (Drew–Gallauer). The ∞-category of functors D’s satsyfing Ayoub’s ax-
ioms has an inital object MSp, called motivic spectra.

We will in the rest of the lecture explain how to construct this category MSp(X) for a
scheme X.

3.2. Construction of motivic spectra. In what follows we denote by SmX the category
of smooth X-schemes.

The following topology play a key role in the construction of motivic spectra.

Definition 3.3 (Nisnevich topology). Let X be a scheme. A familly of étale maps
(Ui → X) is called a Nisnevich cover if for all fields k⊔

i

Ui(k)→ X(k)

is surjective. We call the Nisnevich topology the topology on SmX generated by those
families of maps.

Remark. Nisnevich topology is finer than Zariski topology but coarser than the étale
topology. In the étale topology we ask the map to be surjective only for all algebraically
closed fields allowing for more maps to be covers. We mention that there is a neat
interpretation of the Nisnevich topology in term of the universal topology with respect to
Henselian local rings. Namely, localization at points of rings of functions in the Nisnevich
topology are Henselian local rings. Henselian local rings are local rings for which Hensel’s
lemma holds. See [Stacks, Tag 04GE] for more on Henselian local rings.

11On this subject, see the notion of a cohomologically smooth morphism in [SchSix, Definition 5.1].
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Definition 3.4 (A1-invariant Nisnevich sheaves). A presheaf

F : Smop
X → Ani

is called a A1-invariant Nisnevich sheaf if for all Nisnevich covers (Ui → U) in SmX the
natural map

F (U) lim←−
(∏

F (Ui)
∏

F (Ui ×U Uj) · · ·
)∼

is an isomorphism and F (U)
∼−→ F (U × A1).

We denote by

MAni(X) = {A1 − invariant Nisnevich sheaves} ⊂ Fun(Smop
X ,Ani).

This inclusion is a right adjoint.
We can now state the following construction of motivic spectra.

Theorem 3.5 (Construction of Motivic spectra). The stable ∞-category of motivic spec-
tra can be constrcuted as

MSp(X) = MAni(X)∗[(P1
X/∞)⊗−1]

meaning that we inverted the relative projective line pointed at infinity P1
X/∞ with respect

to the tensor product.

Remark. The stability will be explained below, when we will address why this construction
satisfy Ayoub axiom (5) P1-stability.

Remark. We point out in this remark that this construction is actually an analogue of a
topological construction of sheaves of spectra. Namely, let X be now a topological space
and SmX the category of manifolds bundles of X. Equip SmX of the topology generated
by open coverings. In the definition of homotopy invariance replace − × A1 by − × R.
Now, we have

Sh(X,Sp) = {Homotopy invariant sheaves on SmX}[(S1)⊗−1].

We will now explain why with this construction MSp(X) satisfy Ayoub’s axioms.

(1) Zariski descent. X 7→ MSp(X) is even a Nisnevich sheaf by construction; as
Nisnevich topology is finer than the Zariski one, axiom (1) follows.

(2) Smooth base change. One can show that the forgetful functor adjoint to the
pullback

SmY SmX
f∗

f♯

will transport through the construction.
(4) A1-homotopy invariance. We want to show that

p∗ : MSp(X)→ MSp(X × A1)

is fully faithful. This holds if and only if the co-unit map p♯p
∗ → id is an isomor-

phism. But
p♯p

∗U = U × A1 → U

is an isomorphism as we forced A1-invariance.
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(5) P1-stability. Let us fix the following notations, with s being the zero section, and
A1 \ 0 denoting the scheme Gm. We choose this notation because the following
calculations borrow good intuition from the ”real” case.

X × A1 \ 0 X × A1 X
j

p

s

We first remark that

p♯s∗(1)⊗− ∼= p♯s∗(1⊗ s∗p∗) ∼= p♯s∗,

because both p♯ and s∗ satisfy projection formula (the latter is proper being a
closed immersion) and ps = id. In other words, the functor p♯s∗ is an equivalence
if and only if p♯s∗(1) is ⊗-invertible.

To show this, we will use the following consequence of the localization axiom
(that we will address next), namely that

j♯j
∗ → id→ s∗s

∗

is a cofiber sequence. Therefore p♯s∗(1) = p♯s∗(s
∗
1) is equal to

cofib(p♯j♯j
∗
1→ p♯1).

But the latter is the cofiber

A1 \ 0→ A1 → A1/(A1 \ 0).

Now we claim that the bottow arrows of the following diagram, where vertical
arrows are cofiber sequences, are equivalences.

A1 \ 0 P1 \ 0 ∼= A1 ∗

A1 P1 P1

A1/(A1 \ 0) P1/(P1 \ 0) P1/∞

∼

∞

The fact the right bottom arrow is an equivalence follows from the fact that the
top right arrow is an equivalence by A1-invariance. Note also that the left upper
square is a pushout of Zarsiki sheaves, namely this is the standard gluing of P1.
It then follows that the left bottow arrow is an equivalence.

Now, in the construction of motivic spectra we inverted P1 with respect to ⊗,
so A1/(A1 \ 0) is ⊗-invertible has required.

With this explanation, we also understood why this axiom is called P1-stability.

Remark. Note that the upper left pushout square

A1 \ 0 = Gm P1 \ 0 ∼= A1

A1 P1
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also implies that ΣGm = P1 using A1 ≃ ∗. We inform that Morel–Voevodsky [MV99,
p. 111] have defined motivic spheres as

Sp,q := Σp−qG⊗q
m .

Note also then that

S1 ⊗Gm ⊗ (P1)⊗−1 = P1 ⊗ (P1)⊗−1 = 1

implying that S1 and Gm are both ⊗-invertible. In particular it follows that MSp(X) is
stable, and that all motivic spheres are ⊗-invertible.

We now address the most difficult axiom to show, namely the localization axiom. Note
also that the use of the Nisnevich topology was not shown yet. It becomes crucial here.

(1) Localization axiom. This is a consequence of the following theorem [MV99, pp. 113–
118].

Theorem 3.6 (Morel–Voevodsky). Let ι : Z → X a closed subscheme with open
complement j : U → X then

MAni(Z) MAni(X)

∗ MAni(U)

ι∗

j∗

is a cartesian square of ∞-categories.

This theorem uses all aspects of the definitions,
• generated by smooth schemes,
• the Nisnevich topology,
• A1-invariance.

The Henselian property of local rings in the Nisnevich topology12 is crucially used
as well as a version of a tubular neighbourhood theorem in algebraic geometry.
If Z → X is closed then there exists a scheme V (to be thought as a tubular
neighbourhood) with

Z Z Z

X V NZ/X

zero section

étale étale

Here are some more results that highlight the necessity of the Nisnevich topology.

Proposition 3.7 (Morel–Voevodsky, characterization of Nisnevich descent). Let C be a
complete ∞-category, and F : Schop → C. The following are equivalent.

(1) F is a Nisnevich sheaf.
(2) F is a Zariski sheaf and satisfies Nisnevich excision.

12Morel and Voevodsky clearly put the emphasis that this result would not hold if Zariski topology
was used to construct motivic spectra [MV99, p. 113].
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Nisnevich excision being defined as sending every cartesian square of the form

W V

U X

p étale, iso over X\U

open

to a cartesian square.

Proposition 3.8. If D : Schop → Catstable∞ satisfies smooth base change and localization,
then D satisfy Nisnevich excision.

In particular, we see from these last two results that it is a consequence of Ayoub’s
axioms that D is necessarily a Nisnevich sheaf.

Actually, from this last fact, Theorem 3.6 is a formal consequence. This is explained
in [DG22].

3.3. Concluding remarks. We mention that finding a 6-functor formalism for schemes
without A1-homotopy invariance is a major open problem. Such a formalism should
capture all known cohomology theories as K-theory, THH, TC, syntomic cohomology,
prismatic cohomology, de Rham chomology, . . . Recent works [EM23],[AHI24a],[AHI24b]
goes into this direction.

All these cohomologies satisfy Nisnevich descent and P1-stability but not localization
and A1-invariance. The localization axiom should be replaced by a formal (in the “formal
scheme” sense) variant.
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