
MODULI FUNCTORS AND AUTOMORPHISMS

LÉO NAVARRO CHAFLOQUE

Abstract. This note is meant to analyze precisely how “automorphisms are an obstruction
to the representability of moduli”. In particular we define precisely what is a moduli functor.

1. Introduction

We make a precise definition of “moduli functor”.

Definition 1.1. Let (C, τ) a category equipped with a subcanonical Grothendieck topology. A
moduli functor M : Cop → Ani≤1 is a substack of S 7→ C≃

/S .

Remark. This definition makes sense for a n-category C for 0 ≤ n ≤ ∞ and then the natural
notion of moduli functor lands in Ani≤n.

In [HTT, p. 6.1.6] Lurie shows that any moduli functor with value in Ani on an ∞-topos is
representable. This is simply that sheaves on a topos are representable which can be viewed as
a tautology.

This is the quick definition where the word “stack” encompasses some data:

(1) for each object S of C the set π0(M(S)) is a set of isomorphism classes of objects over
S, and these collections are stable by pullback,

(2) maps M(S)(X,Y ) between two objects X,Y ∈ M(S) are a subset of IsoS(X,Y ) isomor-
phisms of S-objects. The collection of maps M(S)(X,Y ) is stable under composition
and pullback,

(3) we can glue objects and maps in M with respect to the topology τ .

We will write M = π0(M) : Cop → Set, with no sheafification considered.
We begin by some computations of first cohomology in order to study more precisely the

saying that “automorphisms are obstruction to representability of moduli”. The key aspect
should be that it allows to construct locally trivial but not globally trivial objects, and take as
main example the Möbius band construction .

We will study as a toy case the context of topological spaces where the Möbius band idea is
here without analogy.

In the case of schemes, we consider

C := V+(x) ∪ V+(y) ∪ V+(z) ⊂ P2
R,

where R being any ring such that it’s reduction is integral. This is the “triangle” in P2
R. Denote

by Ux = D+(x) ∩ C and similarly for Uy and Uz. These three opens are isomorphic to the
cross X = Spec(R[st]/(st)). The goal is to show that C can play the role of the circle where to
perform “Möbius band construction” but in the realm of schemes.

We will also provide a meta proposition using the general context introduced above.
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2. Computations in first cohomology

We will need some preliminary lemmas. In what follows C is a category equipped with a
Grothendieck topology. We recall that the notion of Čech cohomology (See for example [Sta,
Tag 03AK]) is the correct one for H0 and H1.1 For i = 0, 1, when we write Hi(X,G) for an
object X ∈ C and G a group in Set we mean the Čech cohomology Hi(X,G) where G denotes
the constant sheaf on C with value G where G can be a group for i = 1 or more generally a set
for i = 0.

Definition 2.1. Let C be a category equipped with a Grothendieck topology. We say that
U ∈ C is connected if the natural map S → H0(U, S), where S is any set is an isomorphism.

Remark. This is equivalent to saying that there is no two non-empty sub-sheaves U1 and U2 of
U in Sh(C) such that U = U1 ⊔ U2.

The following is a proof by hand that can be useful in many situations to compute first
cohomology groups.

Lemma 2.2. Let C be a category with a Grothendieck topology with fiber products. Let X ∈ C
be an object and G a (not necessarily abelian) group. Let U = (Ui → X) be any cover of X such
that any Ui’s and Uij = Ui ×X Uj’s and Uijk = Ui ×X Uj ×X Uk’s are connected (in particular
non-empty). Then

H1(U , G) = 1

More precisely, if X is an object in C and (Ui)i∈I any open cover of X and (φij) cocyles, then
if (Ui)i∈I0 = U is a subset of this cover (who does not necessarily cover X) that satisfies the
above, then we can find cocycles (φ′

ij) cohomologous to (φij) such that φ′
ij = 1 for all i, j ∈ I0

and φij = φ′
ij when both i and j are not in I0.

Proof. Note that the connectedness hypothesis imply that sections on Ui, Uij and Uijk take all
value in G. This is implicit in our notation in what follows.

Here is a “by hand” argument. Let’s write the set of indices I0 = I ′0 ∪ j0. Let hi0 = φ−1
i0j0

=

φj0i0 for any i0 ∈ I ′0 and hi = 1 if i ̸∈ I ′0. Denote by δi the indicator function of I0. Therefore

hi = φδi
j0i

. Now by construction (φ′
ij) where,

φ′
ij = hiφijh

−1
j = φδi

j0i
φijφ

δj
jj0

is a cocyle cohomologous to the initial one. As we supposed that triple intersections are not
empty for any i, j, k ∈ I0, the cocycle condition secures the proof of the lemma, in the sense that
it shows that indeed (φ′

ij) are cocycles, meaning that they also satisfy the cocycle condition.

Another proof. The 2-truncated Čech nerve of U is the same as the 2-truncated Čech nerve
of a complete graph where any triangle in the graph is filled. The latter is contractible therefore
H1(U , G) = 1. □

Remark. Any irreducible topological space Y satisfies Lemma 2.2 – it implies H1(Y,G) = 0.

1By correct we mean that if we look at the ShSet(C)/X and π : Sh(C)/X → Set the unique morphism, then

H0(X,π∗S) in the Čech sense is π∗π
∗S and H1(X,G) in the Čech sense computes isomorphism classes of π∗G-

torsors in ShSet(C)/X .

https://stacks.math.columbia.edu/tag/03AK


MODULI FUNCTORS AND AUTOMORPHISMS 3

Remark. The triple intersection requirement is really necessary and is at the core of the argu-
ment! Indeed the real circle has non trivial first cohomology but is covered with three opens Ui,
Uj and Uj0 with double intersections being connected and with an empty triple intersection.

We introduce the following.

Definition 2.3. A 1-cohomological circle in a category C with a Grothendieck topology τ is
an object C with a covering (Ui → C), by connected objects, with intersection being connected
and triple intersection empty with the property that H1

τ (Ui, G) = 0 for any constant group G.

Example 2.4. The circle in Top is an example. If R is a ring with an integral reduction, then
Proj(R[x, y, z]/(xyz)) is also in SchR with the Zariski topology.

Lemma 2.5. Let C be a category equipped with a Grothendieck topology τ and C a 1-cohomological
circle. If Conj(G) denote conjugacy classes of G we have

H1
τ (C,G) = Conj(G)

Any torsor is given by the “Möbius band construction”.

Proof. We compute the Čech cohomology with the aforementionned cover with coefficient in a
constant group G. Note that there is no cocycle condition as the triple intersection is empty.
We can apply the lemma to the subset of the cover Ui and Uj to get only coycles of the form
(1, 1, g). That’s what we mean by a torsor obtained by the “Möbius band construction”. Now we
see that (1, 1, g) and (1, 1, g′) with g, g′ ∈ G are cohomologous if and only g and g′ are conjugate
to each other. Therefore

H1
τ (C,G) = Conj(G)

□

We now work toward the schematic contex. Recall that X denotes the cross Spec(R[st]/(st)),
and R is any ring with reduction being integral.

Lemma 2.6. Let G be any group. Then H1
Zar(X,G) = 0.

Proof. Any Zariski open cover of X can be refined in the following way,

Uα1 ∪ · · · ∪ Uαr ∪ Vβ1 ∪ . . . Vβn ∪Wγ1 ∪ · · · ∪Wγm

where all opens are connected with non empty connected intersections (for the first type they
are all union of two intersecting irreducible components) and

• Uα1 ∪ · · · ∪ Uαr covers the origin Spec(R). (Meaning that Spec(R) ⊂ Uα1 ∪ · · · ∪ Uαr .)
• Vβ1 ∪ . . . Vβn is a cover of the horizontal Gm,R by irreducible opens,
• Wγ1 ∪ · · · ∪Wγm is a cover of the vertical Gm,R by irreducible opens.

Let (φij) be a cocycle. Denote accordingly A, B and C subsets of indices of this cover according
to the latter. Note that opens type B and C have empty intersection with one another. Also
note that opens of type A all intersect opens of type B and similarly all interesect opens of type
C. By Lemma 2.2 we can suppose that φij = 1 for all i, j with i, j ∈ A, i, j ∈ B and i, j ∈ C.
Here we use that Spec(R) and Gm,R are irreducible. Note that φab = φa′b′ and φac = φa′c′ for
all a, a′ ∈ A, b, b′ ∈ B and c, c′ ∈ C. Indeed

φa′c′ = φa′aφacφcc′ = φac
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and symmetrically for opens of type A and B. So basically we are left with two cocycles φab

and φac. Leting hb = φab and hc = φac and ha = 1 for any a ∈ A, b ∈ B and c ∈ C we see that
the initial cocyle is cohomologous to 1 by letting φ′

ij = hiφijh
−1
j . □

Recall that C = Proj(R[xyz]/(xyz)) denote the triangle. Let Uα = D+(α) for α = x, y, z.

Lemma 2.7. Let G be any group. Then

H1
Zar(C,G) = Conj(G).

Proof. Lemma 2.6 shows that H1(Ux, G) = H1(Uy, G) = H1(Uz, G) = 0. Note that Ux∩Uy∩Uz =
∅. Therefore the proof is the same as in Lemma 2.5. □

3. Obstruction to representability

3.1. Topological spaces. We do for now some pure topology, proving a bit more than in the
general context Proposition 3.3. We will see later what can be adapted to the above case. We
work in a cartesian closed category of topological spaces.

Proposition 3.1. Let M be a moduli functor on Top for the standard topology. If there
exists X ∈ M(∗) such that there exists in G = M(∗)(X,X) ⊂ Aut(X) an element which is
not homotopic to the identity in M(∗)(X,X) (here Aut(X) comes equipped with the natural
compact open topology and M(∗)(X,X) with the subspace topology) then M is not a sheaf. In
particular, it is not representable.

The proof is similar to the following fact on X-bundles. We recall some about them.

(1) An X-bundle over S is a topological space p : V → S such that there is an open cover
Ui of X with Vi = p−1(Ui) ∼= Ui ×X as an Ui-topological space.

(2) A morphism of X-bundles over S is simply a morphism over S.
(3) Write φi : Vi → Ui × X for the isomorphism. Note that φiφ

−1
j : Uij × X → Uij × X

gives φij ∈ Top(Uij ,Aut(X)). These are cocyles with coefficient in the sheaf Aut(X) of

continuous maps to the topological group Aut(X). The following lemma is interesting.

Lemma 3.2. Two X-bundles over S are isomorphic if and only if they are in the same
class in H1(S,Aut(X)).

Proof. First, suppose that ψ : V → W is an isomorphism of X-bundles over S. Denote
by (φij) and (φ′

ij) cocycles of V andW respectively. Note that φ′
iψφ

−1
i : Ui×X → Ui×X

gives an element hi ∈ Aut(X)(Ui). We have

hiφij = φ′
iψφ

−1
i φiφ

−1
j = φ′

iψφ
−1
j = φ′

iφ
′−1
j φ′

jψφ
−1
j = φ′

ijhj .

On the other hand if two X-bundles define the same cohomology class, then there is a
covering Ui and hi ∈ Aut(X)(Ui) with hiφij = φ′

ijhj . Now, ψi : Vi → Wi defined by

ψi = φ′−1
i hiφi glues to a map ψ : V →W . Indeed

φ′−1
i hiφi = φ′−1

i hiφiφ
−1
j φj = φ′−1

i φ′
iφ

′−1
j hjφj = φ′−1

j hjφj

□
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(4) Note that in Top any sub-presheaf of a topological space T , say F ⊂ hT is representable
by the topological space A := F (∗) ⊂ T with the sub-space topology. Indeed a map from
a space Y → T is a a continuous map Y → X which factors through A. In particular
M(−)(−×X,−×X) is the functor representing G.

Proof of proposition 3.1. Let σ ∈ M(∗)(X,X) be an automorphism not homotopic to the
identity. Let E → S1 be the Möbius band construction. We have E ∈ M(S1) by de-
scent. Suppose by contradiction that M is a sheaf. Then E and X × S1 are isomorphic
with ψ ∈ M(S1)(E,S1 ×X). We now proceed as in Lemma 3.2. Let U1, U2, U3 be a cover of
the circle with connected opens with connected double intersection and empty triple intersec-
tion. Suppose that (φij) are cocycles in G coming from trivializations (this is the case with
the Möbius consruction and the trivial one). We claim that hi = φ′

iψφi defines an element in
Top(Ui, G). For this we just need to show that it factors to this subspace. But this is true by
stability by pullback and the last point in the above remark Therefore, it follows that E and
S1 ×X define the same class in

H1(S1, G) = [S1, BG] = Conj(π1(BG)) = Conj(π0(ΩBG)) = Conj(π0(G))

a contradiction. □

3.2. General context. What generalizes in the proof above? Let us think in the setup of
a category C equipped with a Grothendieck topology and fiber products. We first analyze
X-bundles. The notion makes perfect sense, and cocycles are tautologically valued in the sheaf

U 7→ AutU (U ×X,U ×X)

which deserves the notation Aut(X).
Here is the prototypical proposition that we have mind. This is a scheme of proof and specific

proofs in contexts consist of showing that hypothesis of this proposition are met.

Proposition 3.3. Let (C, τ) a category with finite limits equipped with a subcanonical Grothendieck
topology and M a moduli functor. Suppose that there exists a 1-cohomological circle C in C.
If there exists an X ∈ M(∗) such that M(−)(− ×X,− ×X) is representable by a non-trivial
discrete group G, then M is not a sheaf, in particular not representable.

Proof. Take a non-trivial automorphism in G. Perform a Möbius band construction on C. Then
the proof of Proposition 3.1 goes. □

Note the following corollary by just taking the contraposition.

Corollary 3.4. With context as in Proposition 3.3, if M is representable then for any X ∈
M(−)(−×X,−×X) is either trivial, or not representable by a discrete group.

Remark. So we see that discrete automorphisms are certain (in the sense “sure”) obstructions
to representability. If they were non-discrete, it could be the case that they are trivial in term
of our cohomological circle. Suppose for example in the topological case that automorphisms
groups are all connected and non-discrete. Then from the point of view of the circle, all bundles
on this group are trivial. That is to say that if automorphisms are not discrete, we can not be
sure that they obstruct representability because they may be “homotopic to the identity” in
the sense that they are not detected by a cohomological circle.
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Remark. Given a specific context, two things to prove are hidden in Proposition 3.3. Namely
the existence of a 1-cohomological circle and that M(−)(− ×X,− ×X) is representable by a
discrete group.

Example 3.5. Proposition 3.3 shows that the moduli of elliptic curves is not representable.
Take the elliptic curve E : y2 = x3 + x+1. The only automorphism of elliptic curve is given by
y 7→ −y over any base. This shows that M(−)(−× E,−× E) = Z/2Z.

Example 3.6. Let C = Set with the discrete topology and we considerM(S) to be the groupoid
of relative finite sets, namely sets T → S such that each fiber is finite. Then M is representable
by N. However except for the empty set and the singleton, finite sets have non-trivial automor-
phisms! Note that for any group G and any set S we have H1(S,G) = 0. So the presence of a
“non-trivial object in first cohomology” goes together with automorphisms being an obstruction
to representability.

3.3. Schemes. Our goal is now to show the following.

Proposition 3.7. Let M be a moduli functor on schemes. Let k = k be an algebraically closed
field. If there exists X ∈ M(k) finite type and separated such that M(k)(X,X) is a non trivial
and finite group, then M is not a Zariski sheaf. In particular, it is not representable by a
scheme.

Proof. The base k is implicit. We show that M is not a sheaf. To do this it suffices that it is
not a sheaf on the category finite type separated k-schemes with the Zariski-topology. That’s
the category C we are using.

We need to show that M(−)(− ×X,− ×X) is representable by the finite group G on this
category. Note that S ∈ C (so separated), and ψ ∈ M(S)(S ×X,S ×X) the set of s ∈ S such
that ψ(s) = g for a g ∈ G is closed in X × S. Indeed this is because the scheme X × S is
separated and so the set ψ = id×g is closed for any g ∈ G. Also note that for any closed point
s ∈ S, the restriction ψs had to be of the form id×g for some g. Therefore, because this scheme
is Jacobson, we conclude that those subsets form a finite closed decomposition, and therefore
a finite open decomposition of X × S. Projection to S, we get an open decomposition of S,
showing that M(−)(−×X,−×X) is representable by the finite group G on this category.

Now we can conclude the proof with the help of the prototypical Proposition 3.3. □
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