
INTRODUCTORY POINTS IN THE THEORY OF PERFECTOID RINGS

LÉO NAVARRO CHAFLOQUE

Abstract. These notes are meant to lay out basic lemmas in the theory of perfectoid rings
(Section 2). The definition used (Definition 2.2) is the one of [BMS19]. In particular we prove
the tilting equivalence (Proposition 2.20) in this generality. As an application of the theory, we
also included a proof of almost purity theorem for perfectoid fields.

We include at the end a section with recollections on (derived) completion (Appendix A).
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1. Functions of the variable p

If p is a function then I am geometer.

We present in this first section elementary properties of the Witt vectors, which are a mixed
characteristic analogue of the ring of formal series R[[t]]. Namely, it does so that if R is a perfect
Fp-algebra, then elements of the Witt vectors W (R) with coefficients in R can be written as,

∞∑
n=0

[rn]p
n

where [rn] will be lifts of rn ∈ R and vanishes vis-à-vis a good notion of p-derivation.
Moreover, we would like that to be able to lift the Frobenius to a ring map in the following

way
1
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∞∑
n=0

[rn]p
n 7→

∞∑
n=0

[rpn]p
n.

1.1. δ-rings. To introduce Witt vectors, it is very convenient to introduce first the appropriate
notion of p-derivation, which will detect our “constant functions with respect to p” in our power
series ring with variable p. References for this section are [BS22, Section 2] and [Bha, Lecture
2].

Meditation. To this end, we will meditate a bit starting from the story of classical derivations,
and how from them one gets to the ring of formal series. The reader in a hurry will jump to
Definition 1.3.

Let k be a field of characteristic zero. In this brief reminder, we work in the category of
k-algebras. A derivation on a k-algebra R is a k-linear map d : R → R, which satisfies the
Leibniz rule, for all r, r′ ∈ R,

d(rr′) = rd(r′) + r′d(r).

This corresponds to the choice of a global section of the k-tangent bundle on Spec(R). We
denote by vd this corresponding section so that vd(x) is an infinitesimal direction at x. For

every point R
−(x)−−−→ k, the map,

−(x+ ϵvd(x)) : R→ k[ϵ]

that sends f 7→ f(x + ϵvd(x)) := f(x) + ϵd(f)(x) is a morphism of k-algebras. Notice that
formally playing around with this yields

d(f)(x) =
f(x+ ϵvd(x))− f(x)

ϵ
.

Derivations R → R are in one to one correspondence with sections R → R[ϵ] of the evaluation
at 0. Geometrically this corresponds to retraction from an universal one directional first order
thickening Spec(R[ϵ])→ Spec(R).

If we fix a derivation d on R, then note that we have a very natural ring morphism map
R→ R[[t]],

f 7→
∞∑
n=0

dn(f)
tn

n!

that sends a function to it’s Taylor series. The fact that this is a ring morphism follows from
classical computations with Taylor series. Notice that R[[t]] is on a set theoretic level naturally
isomoprhic to RN via coefficients of the series, but the transported ring law is not the pointwise
law.

A nice way of thinking of this map is as the unit map of a forgetful ⊣ co-free adjunction,

k −Algd((R, d), A[[t]])
∼= k −Alg(R,A)

where k −Algd denotes differential k-algebras, so k-algebras equipped with a derivation.
To continue the digression, we make a more precise analogy of what will happen. They key

is the following key similarity
k[[t]] is similar to Zp.

One are functions of an “equicharacteristic formal t-neighbourhood around a k-point”, and the
other are a functions of an ”mixed characteristic formal p-neighbourhood around an Fp-point”.
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Let us consider first k[[t]]-algebras R. We consider a lift ϕ of the identity on the t-fiber, for any
f ∈ R

ϕ(f) = f + tδ(f)

Assume first that R is t-torsion free so that δ(f) is uniquely determined. If you want that ϕ is a
ring morphism you are lead to the following axioms for δ, that we will then call a t-derivation.

(1) δ(0) = δ(1) = 0.
(2) For any f, g ∈ R,

δ(f + g) = δ(f) + δ(g).

(3) For any f, g ∈ R,
δ(fg) = fδ(g) + gδ(f) + tδ(f)δ(g).

Note that with these axioms, for k[[t]]-algebras R such that tR = 0, we retrieve the classical
notion of derivation of k-algebras so that this notion is really a natural generalization of the
notion k-derivations of k-schemes to a notion of “derivation” on schemes that are infinitesimal
deformation of k-schemes i.e. schemes over k[[t]]. What is happening has a geometric flavour
behind it. Imagine something over k[[t]], so a deformation of k-scheme around the t-fiber. Then
imagine an endomorphism of this scheme that fixes the fiber. What this endomorphism does
“around” the fiber should define something “tangent to it”, and we see this with the above
remark.

Now let’s turn to Zp. Our dream is to realize as a sort Fp[[p]]. The first problem is that Zp is
not Fp-algebra and so we a priori can not make sense of ”multiplying elements of Zp by element
of Fp”. However something suffices for our needs.

Lemma 1.1. There is a unique multiplicative section

[−] : Fp → Zp.

This section has image exactly the elements f ∈ Zp such that fp = f , i.e zero and p − 1 roots
of unity. If we realize Zp = lim←−Z/pnZ, then this section can be written as taking any lift n ∈ Z
of an element in Zp and sending to

n 7→ (n, np, np
2
, · · · ).

Moreover, any f ∈ Zp has a unique writing as,

f =
∞∑
n=0

[αn]p
n

for a unique sequence (αn) ∈ FN
p .

Proof. Will follow from Lemma 1.18. See Definition 1.19. Same goes for next Lemma 1.2. □

To really understand where the notion of p-derivation comes from, we will need in fact the
following generalization of the last lemma. We denote by q a power of p and Zq = Zp[ξq−1] and
by χ(t) the q − 1 cyloctomic polynomnial.

Lemma 1.2. There is a unique multiplicative section

[−] : Fq → Zq.
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This section has image exactly the elements f ∈ Zp such that f q = f , i.e zero and the q−1 roots
of unity. If we realize Zq = lim←−Z[t]/(pn, χ(t)), then this section can be described as follows.

Take x ∈ Fq. Take any any lift yn of x1/p
n
. Then,

x 7→ (y0, y
p
1 , y

p2

2 , · · · )

Moreover, any f ∈ Zq has a unique writing as,

f =

∞∑
n=0

[αn]p
n

for a unique sequence (αn) ∈ FN
q .

Now, these should play the role of the “constants”, and for a notion of p-derivation on Zp-
algebras (what we seek) we would ask for δ([−]) = 0. We will now try to apply the same
technique as exposed above for t-derivations. We will try to guess what is the right thing to do
find a p-derivation on Zq. If δ : Zq → Zq is the desired p-derivation, in analogy we would like
to write

ϕ(f) = σ(f) + pδ(f)

for ϕ a ring morphism and σ some expression that we are still seeking for. Note that the only
ring morphisms on Zq are lift of the powers of the Frobenius. In particular note that the only
lift of the identity is the identity. Therefore using the exact same idea as for t-derivation would
not work, because it would lead to

f = f + pδ(f)

and δ = 0. However we have here the minimal choice to lift the Frobenius instead of the identity,

ϕ(f) = fp + pδ(f).

Note that for such a δ which is uniquely determined and non-trivial, we indeed have δ(f) = 0 if
and only if f q = f , so this localizes the constant functions with respect to p that we highlighted
above. We will see in what follows that such a mantra, i.e. p-derivations as reminders of lift of
the Frobenius, give rise to a rich theory. To end our meditation, we let ourselves contemplate
with the journey in mind

d(f)(x) =
f(x+ ϵvd(x))− f(x)

ϵ
and δ =

ϕ(f)− fp

p

We now pass to formal definitions.

Definition 1.3 (p-derivation, δ-ring). Let A be ring. A p-derivation on A is a map of sets
δ : A→ A such that

(1) δ(0) = δ(1) = 0
(2) For any x, y ∈ A,

δ(xy) = xpδ(y) + ypδ(x) + pδ(x)δ(y)

(3) For any x, y ∈ A,

δ(x+ y) = δ(x) + δ(y) +
xp + yp − (x+ y)p

p
.
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A δ-ring is a ring equipped with a p-derivation. A morphism of δ-rings is a morphism of rings
that commutes with p-derivations on both rings. The category of delta rings will be denoted
by Ringδ.

Remark. One sees that for any n ∈ Z

δ(n) =
n− np

p

This shows that this is the unique δ-ring structure on Z and that (Z, δZ) is initial in the category
of δ-rings.

There is an intimate link between p-derivation and lifts of the Frobenius, as explained earlier.
We gathr these connetions in the following Lemma.

Lemma 1.4. Let A be a ring.

(1) If δ : A→ A is a p-derivation then ϕ(f) = fp + pδ(f) is a lift of the Frobenius modulo
p.

(2) If A is p-torsion free, this gives a bijection between δ-structures and lift of the Frobenius.

Contrary to the story of t-derivations talked about earlier, p-derivations is something that
gives nothing on algebras that are killed by a power of p.

Lemma 1.5. Let (A, δ) be a δ-ring such that there exists an n with pnA = 0. Then A = 0.

Proof. By induction on n, using that n = 0 is trivial. Note that

0 = δ(pn) =
pn − pnp

p
= pn−1(1− pp(n−1)−1).

The right hand side is pn−1 times a unit. Induction concludes. □

The following basic remark is also important for later.

Lemma 1.6. Let (A, δ) be a δ-ring and f ∈ A with p-torsion. Then ϕ(f) = 0. Therefore if ϕ
is injective A is p-torsion free.

Proof. Say px = 0. We may prove that x = 0 by localizing at every prime, so we can suppose
that A is p-local. Then

0 = δ(px) = xpδ(p) + ppδ(x) + pδ(x)δ(p) = xpδ(p) + ϕ(p)δ(x) = xpδ(p) + pδ(x).

But as δ(p) = 1− pp−1, we get ϕ(x) = pp−1xp = 0, because px = 0 by assumption. □

Lemma 1.7. Let A be a δ-ring which is p-adically separated and such that the reduction modulo
p is reduced. Let d ∈ A with δ(d) being a unit (this is true for any distinguished element if the
ring is (p, d)-local). Then A is d-torsion free.

Proof. Say dx = 0. Then

0 = δ(dx) = xpδ(d) + dpδ(x) + pδ(x)δ(d) = xpδ(d) + ϕ(d)δ(x).

So multiplying by ϕ(x) and using that δ(d) is a unit we get that 0 = xpϕ(x). Reducing modulo
p, and using that it is reduced implies that p | x. So x = px′ for some x′. Then pdx′ = 0. By
p-torsion freeness and induction, we conclude that pn | x for every n ≥ 1 and therefore x = 0
by separatedness. □



6 LÉO NAVARRO CHAFLOQUE

In the analogy W (R) and R[[t]] we now construct the analogue of R[ϵ]. For any ring R, we
endow the product R×R with the following operations. For (r0, r1), (r

′
0, r

′
1) we define

(r0, r1)+̂(r′0, r
′
1) = (r0 + r′0, r1 + r′1 +

rp0 + r′p0 − (r0 + r′0)
p

p
)

and

(r0, r1)̂·(r′0, r′1) = (r0r
′
0, r

p
0r

′
1 + r′p0 r1 + pr1r

′
1)

Lemma 1.8. This defines a functor W2 : Ring → Ring such that for any R, ring morphisms
R → W2(R) which are sections of the first projection are in one to one correspondence with
δ-structures on R.

Proof. The functoriality to sets equipped with two laws is obvious. We need to prove that this
two laws form a ring on W2(R) for any ring R. If R is p-torsion free, one sees that the map
W2(R)→ R×R

(r0, r1) 7→ (r0, r
p
0 + pr1)

is injective and that the image is the subring of R×R with the pointwise law,

{(f, g) ∈ R×R | g ≡ fp mod p}
and that the laws defined above are exactly the ones that we get by transport of structure.

Now in particular we have proven the claim for free rings, also known as polynomial algebras,
and so functoriality and evaluation gives what we want. □

1.2. Witt vectors. The following can be proven without too much difficulty.

Lemma 1.9. The forgetful functor Ringδ → Ring commutes to all limits and colimits.

Recall from the earlier meditation that the power series ring could be realized as the co-free
part of a forgetful ⊣ co-free adjunction from differential rings to rings. The adjoint functor
theorem for presentable categories allows us to make the following definition.

Definition 1.10 (Witt vectors). The right adjoint to the forgetful functor Ringδ → Ring

W : Ring→ Ringδ

is called the functor of the ring of Witt vectors.

Note that for a δ-ring (A, δ) the unit map

A→W (A)

is to be understood as sending functions to it’s Taylor series with derivative in the p-direction
δ.

Remark. It is straightforward that Z{y} := Z[y0, y1, · · · ] with δ(yi) = yi+1 is the free δ-ring on
one element 1. Therefore by (co)-Yoneda lemma we get that Z{y} is a co-δ ring in the category
of δ-rings and that for any δ-ring A this co-δ-structure yields an isomorphism (natural in A) of
δ-rings

HomRingδ(Z{y}, A) ∼= A.

1up to isomorphism of δ-rings, which could be many, the only important is that δ(yi) is algebraically indepen-
dent from the other and that Z[y0, y1, · · · ] is generated by (δn(y0))n≥0.
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One can be more precise: playing a Yoneda game we get that the co-addition Z{y} → Z{u, v}
is given by

y0 7→ u0 + v0

and as a ring map as (δn(u0 + v0))n≥0 and the co-multiplication Z{y} → Z{u, v} is given by

y0 7→ u0v0

and as a ring map as (δn(u0v0))n≥0. Funnily the co-δ map is given by the δ map.

In view of the last remark we can deduce the following on Witt vectors. Indeed, notice that
we have natural isomorphisms of functors (of sets) in R,

W (R) ∼= HomRingδ(Z{y},W (R)) ∼= HomRing(Z[y0, y1, · · · ], R) ∼= RN

Therefore we have a natural bijection of functor of sets,

W → (−)N

between Witt-vectors and the countable product. In other words we get a bijection between
the underlying set of the ring W (R) defines abstractly as a functor as above and RN.

Lemma 1.11. If pA = 0 then the Frobenius lift on W (A) from the δ structure is equal to W (F )
where F : A→ A is the absolute Frobenius.

Proof. Note that

δn(ϕ(y0)) = ϕ(δn(y0)) = ϕ(yn) = ypn + pyn+1

because the Frobenius lift of a δ-ring is always a δ-ring morphism. The claim follows. □

We know introduce ghost coordinates. To this end we introduce the category Ringψ of rings
equipped with a fixed endomorphism. Note that we have a functor Ringδ → Ringψ sending
(A, δ) to (A, ϕ). There is a co-free ring equipped with an endomorphism on a ring, namely the
countable product and the shift. Therefore from the universal map p : W (A) → A we get a
unique morphism in Ringψ

W (A)
ω•=(ωn)−−−−−→

∏
N
A

that we call the ghost coordinates. By construction we have that ωn = ω0(ϕ
n) where ω0 just

denotes the projection on the first coordinate. Also if d :
∏

NA →
∏

NA denotes the shift
(ai) 7→ (ai−1) we have

ω•ϕ = dω•.

Lemma 1.12 (Witt coordinates.). There is a change of variable of Z{y} = Z[y0, . . . , yn, . . . ]
with x0 = y0, x1 = y1 and xn ≡ yn mod (y0, . . . yn−1)Z[y0, . . . , yn−1] for n ≥ 2 such that

ϕn(x0) =

n∑
i=0

pixp
n−i

i =: ωn(x0, . . . , xn)

Proof. By induction. Note that the collection of subgroups In = (y0, . . . yn−1)Z[y0, . . . , yn−1]
satisfy δ(In) ⊂ In+1.
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Note that xn = yn+something implies that this defines an automorphism. Say xn is defined.
Then

ϕn+1(x0) =
n∑
i=0

piϕ(xi)
pn−i

=
n∑
i=0

pi(xpi + pδ(xi))
pn−i

=

n−2∑
i=0

pixp
n+1−i

i + pn(xpn + pδ(xn)) + pn+1in−1

where in−1 ∈ In−1 is some element. So the only choice is

xn+1 = δ(xn) + in−1.

Because in = xn − yn ∈ In we have

δ(xn) = δ(in) + δ(yn) + jn+1 = yn+1 + δ(in) + jn+1

where jn+1 ∈ In+1 so it concludes.
□

Therefore in Witt coordinates, the ghost components map can be written as

(an) 7→ (ωn(a0, . . . , an)).

Definition 1.13 (Vershiebung.). In ghost coordinates we define a natural transformation V : W →
W sending (a0, a1, . . . )→ (0, a0, a1, . . . ) and call it the vershiebung.

Remark. We see from the form of the polynomial that the ghost coordinates

W (A)
ω•=(ωn)−−−−−→

∏
N
A

are injective when A is p-torsion free and bijective when p is invertible. This is useful to
prove properties of the Witt vectors by proving them on polynomial rings and the proceed by
evaluation. This is the main method to prove items of the following lemma. See [GR18, Section
9.3].

Lemma 1.14 (Properties of the Vershiebung). Let A be any ring. Let a, b ∈W (A).

(1) We have aV (b) = V (F (a)b).
(2) The map V is a W -module map V : F∗W →W . In particular Im(V ) is an ideal and is

the kernel of the natural map W (A)→ A. We denote by Vn(A) = Im(V n).
(3) We define (as presheaves of rings) Wn =W/ Im(V n). We have

W = lim←−
n

Wn.

(4) For each n ≥ 1 we have an exact sequence

0 Vn(A)/Vn+1(A) Wn+1(A) Wn(A) 0

and the first term is isomorphic to A as a Wn+1(A) module.
(5) We have that ·p = FV . If pA = 0, then also V F = FV and equals (a0, a1, . . . ) 7→

(0, ap0, a
p
1, . . . ).

(6) If pA = 0 and A is semi-perfect then Vn(A) = pnW (A) and W (A) is p-adically complete.
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1.3. Tilt.

Definition 1.15 (Tilt). We denote by (−)♭ the functor from rings to perfect Fp-algebras,

A♭ = lim←−
(−)7→(−)p

A/pA

that sends A to the inverse limit perfection of the reduction modulo p. Elements of the tilt are
then of the form (a0, a1, . . . ) ∈ (A/pA)N such that for i ≥ 1, we have ai

p = ai−1. We denote by

♯n : A♭ → A/pA the n-th projection.

Remark. Note that whenever A/pA ̸= 0, then A♭ ̸= 0, because for α ∈ Fp, (α, α, . . . ) is always
an element of the tilt. Note that on perfect Fp-algebras, the tilt functor is naturally isomorphic
to the identity functor.

Geometrically, the tilt look at the p-fiber and preserve the points defined by functions that
have all p-th roots and glue together all the others.

The following is useful to think of the tilt as system of compatible p-power roots of R, which
is a key aspect of the tilt construction.

Lemma 1.16. Let R and ϖ ∈ R. Suppose that R is ϖ-complete and that ϖ divides p. Then
the natural map

lim←−
(−)7→(−)p

R→ lim←−
(−)7→(−)p

R/ϖR

is an isomorphism of topological monoids if we equip R with the ϖ-adic topology.

Proof. We advertise that the proof has a similar taste to the proof of Lemma 1.18. We will
define an inverse map.

Fact. Let R be a ring and I and ideal. Then

x ≡ y mod I =⇒ xp ≡ yp mod pI + Ip

So as ϖ | p by hypothesis, we get that if r ≡ r′ mod ϖ then, rp
n ≡ r′p

n
mod ϖn+1. In

particular if (rn)n≥0 ∈ lim←−(−)7→(−)p
R/ϖR. Then for any m ≥ n, if rn and rm are arbitrary lifts

of rn and rm, then as rp
m−n

m ≡ rn mod ϖ,

rp
m − rpn ∈ (ϖn+1)

In particular, as R is supposed ϖ-complete, we get that

(rn)n≥0 7→ lim
n→∞

rp
n

n .

is a well defined multiplicative map lim←−(−)7→(−)p
R/ϖR → R. Notice how the above argument

does not depend on the choice of representative, so that the limit of two different sequences will
different choices of lifts will lie in (ϖn) for all n ≥ 0, and therefore zero. As in lim←−(−)7→(−)p

R/ϖR

the p-power is an isomorphism, it suffices by the universal property of lim←−(−)7→(−)p
to define a

morphism

lim←−
(−)7→(−)p

R/ϖR→ lim←−
(−)7→(−)p

R.

One easily checks that the map is an inverse to the natural map.
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We now show the continuity of the inverse to conclude. It suffices to show the continuity
of the above map lim←−(−) 7→(−)p

R/ϖR → R. Let ((rn,k)n≥0)k be a converging sequence (in k)

in lim←−(−)7→(−)p
R to (rn)n≥0. As R is equipped with ϖ-adic topology, R/ϖR is equipped with

the discrete topology and converging sequences are eventually constant sequences. Let N be
arbitrary. Let K be enough large such that for all k′ ≥ K and we have rN = rN,k. Then we get
for all k′ ≥ K

( lim
n→∞

rn,k)− rN,k′︸ ︷︷ ︸
∈ϖN+1

+ rN − lim
n→∞

rn︸ ︷︷ ︸
∈ϖN+1

∈ ϖN+1

and this implies that the inverse map is continuous. □

Remark. Notice that the proof of the lemma gives furthermore that the following maps are
isomorphisms of monoids (and of rings when appropriate)

lim←−
(−)7→(−)p

R→ lim←−
(−)7→(−)p

R/ϖpR→ lim←−
(−)7→(−)p

R/pR→ lim←−
(−)7→(−)p

R/ϖR.

Note that because p2 ⊂ pϖ, it follows that
⋂
n(ϖp) + (pn) = (ϖp) and therefore that R/ϖpR

is p-complete.2 So we can apply the above lemma to lim←−(−)7→(−)p
R/ϖpR→ lim←−(−)7→(−)p

R/pR.

Also the lemma shows that every map is bijective and an appropriate morphism. Note that
if pR = 0 and that R is ϖ-complete the result always applies.

Corollary 1.17. Let R be a ϖ-complete ring with ϖ | p. Then the following addition on
lim←−(−)7→(−)p

R, for (an), (bn) ∈ lim←−(−)7→(−)p
R

(an) + (bn) =
(

lim
m→∞

(am+n + bm+n)
pm
)

gives a ring structure on lim←−(−)7→(−)p
R with the pointwise multiplication coming from R. This

defines a functor from ϖ-complete rings with ϖ | p to perfect rings in characteristic p which is
naturally isomorphic to the tilt functor.

There is a nice and fundamental calculation which is an example of the particularly nice
interaction of perfect algebras and p-adically complete rings.

Lemma 1.18 (Perfect algebras and p-complete rings). Let A be a p-adically complete ring.

Then there exists a unique multiplicative map (−)♯ : A♭ → A such that the following diagram
commutes,

A

A♭ A/pA

(−)♯

♯0

This map can be described in the following way,

a♯ = lim
n→∞

(
˜♯0(a1/pn)

)pn
= lim

n→∞

(
♯̃n(a)

)pn
2For example because it is p-adically derived complete and p-adically separated, see Lemma A.17.
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where −̃ denotes taking a lift of an element of A/pA in A. In words, take the pn-th root of

a ∈ A♭ in A♭, go to A/pA, take any lift in A, and remultiply by pn. When taking the limit over
n, this process does not depend on the choice of lift.

Proof. It is enough to show that there is a unique multiplicative map that fits into the diagram
for n ≥ 0,

A/pn+1A

A♭ A/pA

[−]n

♯0

Proceed as follows to see the existence. Take any a ∈ A♭ and denote by b any lift of ♯n(a) in

A/pn+1A. Set [a]n = bp
n
. First, note that then the diagram commutes because ♯p

n

n = ♯0. To
see that is well defined, remark the following – for any ring R and x, y ∈ R, we have,

x ≡ y mod p =⇒ xp
n ≡ ypn mod pn+1 (fundamental relation)

Recall again this consequence of the binomial formula.

Fact. Let R be a ring and I and ideal. Then

x ≡ y mod I =⇒ xp ≡ yp mod pI + Ip

If b′ was another lift of a ♯n(a), we would have b ≡ b′ mod p. But then bp
n ≡ b′pn mod pn+1,

which shows that [−]n is well defined. Now for the uniqueness, if [−]n, [−]′n are two such maps,

it means that for all a ∈ A♭ we have

[a]n ≡ [a]′n mod p

Using that both maps are multiplicative and the fundamental relation above, one gets that
[ap

n
]n = [ap

n
]′n. It means that [−]n and [−]′n are equalized by precomposition by (−)pn . Using

that (−)pn is an isomorphism on A♭, we get [−]n = [−]′n. □

Remark. Let A be a p-adically complete, p-torsion free and residually perfect Zp-algebra. Then
using Lemma 1.18, we see that for any a ∈ A, we have a uniquely determined b ∈ A,

a = a♯ + pb

Going by induction, we get that any element can be written uniquely,

a =
∞∑
n=0

an
♯pn

for elements (an ∈ A/pA), with a0 = a.

Definition 1.19 (Teichmüller lift). If A = W (B) for some perfect algebra B in characteristic
p, then we denote by [−] : B → W (B) the unique multiplicative section of the projection
W (B)→ B obtained by Lemma 1.18.

Theorem 1.20 ([FF18], Proposition 2.1.7). The Witt vector functor is left adjoint to the tilt
functor. For A ∈ Zp −Alg∧p and B ∈ PerfFp we have,

Zp −Alg∧p(W (B), A) ∼= PerfFp(B,A
♭)



12 LÉO NAVARRO CHAFLOQUE

The co-unit is given by the following map θA : Ainf(A) :=W (A♭)→ A,

∞∑
n=0

[an]p
n 7→

∞∑
n=0

a♯np
n

Proof. We will first define θA, and by the doing, show that what is in the statement makes sense:
it is a priori not clear that the map is additive (but it is clear that the map is multiplicative).
For n ≥ 0, consider the map W (A)→ A/pn+1A,

(an) 7→ ωn(a0, . . . , an) mod pn+1

where ωn denotes the n-th ghost component. Note that as ωn+1(X0, . . . , Xn+1) = Xpn+1

0 +
pωn(X1, . . . , Xn), one shows by induction on n ≥ 0 that ωn(pX0, . . . , pXn) ≡ 0 mod pn+1.
Therefore, it follows that we have a well defined map ψn :W (A/pA)→ A/pn+1A. Consider now

the n-th projection map ♯n : A♭ → A/pA. We have ♯pn = ♯n−1 for n ≥ 1. We look at the composi-

tion ψn ◦W (♯n) :W (A♭)→W (A/pA)→ A/pn+1A. As ωn+1(X0, . . . , Xn+1) ≡ ωn(Xp
0 , . . . , X

p
n)

mod pn+1, we have that ψn+1 ◦W (♯n+1) ≡ ψn ◦W (♯pn+1) = ψn ◦W (♯n) mod pn+1. Therefore

we have a induced map θA : W (A♭) → A. We now check that it has indeed the form as in the

statement. To show this, it suffices to show that for a ∈ A♭ the Teichmüller lift [a] is sent to
a♯, because p is sent to p. It follows from the fact that θA ◦ [−] ≡ ♯0 mod p, because of the
uniqueness of such multiplicative maps by Lemma 1.18.

We now show that θA is indeed a co-unit. To this end, we need to show the following universal
property, for any B ∈ PerfFp , A ∈ Zp − Alg∧p and map φ : W (B) → A♭ there exists a unique

map φ : B → A♭ such that,

W (B) A

W (A♭)

W (φ)

φ

θA

For the existence of φ, note that modulo p, the map B → A/pA will factor B → A♭ by universal
limit of the limit perfection. Let this map be φ. Then to show that φ = θA ◦W (φ), it suffices
to check that φ ◦ [−] = θA ◦W (φ) ◦ [−] = φ♯. But now for any b ∈ B, we have,

φ ◦ [b] = φ(lim
n
(b̃1/pn)p

n
) = lim

n
( ˜φ(b)1/pn)p

n
= φ(b)♯

Where we used the (automatic) continuity of φ. The unicity is clear by reducing modulo p.
□

Remark. Note that in the proof we used that a map from Witt vectors of a perfect algebra to
a p-adically complete ring is entirely determined by the image of Teichmüller lifts. A universal
property can then be reformulated in those terms : for any multiplicative map B → A such
that B → A→ A/pA is a ring homomorphism, then there exist a unique map W (B)→ A that
extends the original multiplicative map via Teichmüller lifts.

The above theorem motivates that we set up some notation.

Definition 1.21 (Ainf and Fontaine’s θ map). Let R be p-adically complete. We define

Ainf(R) =W (R♭) and call the counit θ : Ainf(R)→ R Fontaine’s θ map.
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The following corollary gives crucial insight in regard of the interaction between the perfect
world in characteristic p and the mixed characteristic (0, p) world.

Corollary 1.22. The adjunction of Theorem 1.20 restricts to an equivalence of categories
between p-adically complete, p-torsion free ( i.e. flat) and residually perfect Zp-algebras and
perfect Fp-algebras. Moreover, these algebras necessarly carry a unique perfect δ-structure and
every ring morphism between such rings will automatically be a δ-ring map.

Proof. Say R is residually perfect. So R/pR = R♭. It suffices to show that the co-unit map

θ : Ainf(R)→ R

is an isomorphism because the unit map is an isomorphism in the case of Theorem 1.20 already.
Because Ainf(R) and R are p-torsion free and p-adically complete, it suffices to check that this

is an isomorphism modulo p, which is the case as R/pR = R♭. Indeed by derived Nakayama
Lemma A.24 it suffices to check that the map is an isomorphism after (−) ⊗L Z/p. But by
p-torsion freeness this is just the reduction modulo p. The first claim then follows.

Now note that because we just showed that the reduction modulo p for flat, p-complete
residually perfect algebras is an equivalence, such rings admit a unique lift of the Frobenius
who will be an automorphism. Also, every map between those rings are necessary lifts a unique
of maps in characteristic p, so they also necessary commute with Frobenii lifts.

□

The following reveals a property about the tilt of a p-complete ring. Namely, it automatically
has some completeness property.

Lemma 1.23. (1) Let B be in characteristic p. Then if d ∈ ker(B♭ → B), B♭ is d-complete.

(2) Let R be p-adically complete and [a]+px ∈ ker(θ : Ainf(R)→ R). Then R♭ is a-complete.

Proof. We first prove (1). Such an element d can be written as d = (xi)i≥1 ∈ B♭ such that
x1 = 0 and xpi = xi−1 for i ≥ 2. But then powers of d are of the form

(0, 0, 0, 0, . . . , 0, x2, . . . )

implying d-completeness. Indeed, a Cauchy sequence will define by induction a unique element
in B♭.

For the second part, note that a ∈ ker(R♭ → R/pR).
□

Lemma 1.24. Let R be ϖ-complete for some ϖ | p. Suppose that ϖ as (up to a unit) a

compatible system of p-power roots ϖ♭ ∈ R♭. Then R♭ is ϖ♭-complete.

Proof. Consequence of Lemma 1.23. Indeed by assumption ϖ♭ ∈ ker(R♭ → R/pR). □

Lemma 1.25. Let R be p-adically complete and d ∈ ker(θ : Ainf(R) → R). Then Ainf(R) is
(p, d)-complete.

Proof. Consequence of item (2) of Lemma 1.23 and Lemma A.10. □

The following yields also a connection between tilt and completions.

Lemma 1.26. Let B be a perfect algebra in characteristic p. Let b ∈ B then we have a natural
isomorphism

(B/(b))♭ → (B/(b))∧,b
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Proof. Look, the morphism of diagrams below is an isomorphism.

B/(b) B/(b) B/(b) B/(b)

B/(bp
3
) B/(bp

2
) B/(bp) B/(b)

(−)p

(−)p
3

(−)p

(−)p
2

(−)p

(−)p =

□

We also note the following property about how the Fontaine’s θ map interacts with units.

Lemma 1.27. Let R be p-adically complete. An element v ∈ Ainf(R) is invertible if and only
if θ(v) ∈ R is invertible.

Proof. We show the non-trivial direction. Write v =
∑

i[vi]p
i. Suppose that the image

∑
i v
♯
ip
i

is invertible, implying that v♯0 is invertible by p-completeness. But v0 seen in lim←−(−)7→(−)p
R has

first component v♯0. As v0 is a compatible system of p-th power roots of v♯0 this implies that each

component is invertible and therefore that v0 is invertible in R♭. By p-completeness of Ainf(R),
we conclude that v is invertible.

□

2. Perfectoids

(. . . ) so in other words, you can think of
characteristic p geometry as some infinite
covers of characteristic zero geometry
over maps which introduces more and
more p-power roots of the coordinates. –
Peter Scholze

The preceding discussion shows hints that the complete mixed characteristic world is con-
nected to the perfect world in characteristic p. We will now continue to explore this kind of
reasoning. In the early 80’s Fontaine and Wittenberger showed the following theorem.

Theorem 2.1 (Fontaine-Wittenberger, [FW79]). Choose an algebraic closure Qp of Qp. Then
there is a canonical isomorphism of Galois groups

Gal
(
Qp | Qp(p

1
p∞ )

)
∼= Gal

(
Fp((t))

sep | Fp((t))
)
.

Geometrically, this suggests more generally an equivalence of an étale topoi in mixed charac-
teristic and an étale topoi in characteristic p. With the goal of proving the weight monodromy
conjecture3, Scholze shed light on the above theorem by generalizing it and finding a geometric4

setup where to prove it [Sch11]. The first part of this section will be a presentation of the notion
of perfectoids rings and will conclude in the Almost purity Theorem 2.36 for perfectoid fields,
which is a generalization of Fontaine-Wittenberger 2.1.

3Goal partially achieved in [Sch11, Theorem 9.6], where he introduced and used to this aim the notion of
perfectoid space.

4Fontaine-Wittenberger is a ”point” case.
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2.1. Perfectoid rings. Here comes the central definition. We will progressively see how such
rings benefits from a special interaction with characteristic p. We make our own path following
roughly [Bha, Lectures 2-4], [BMS19, Section 3] and [CS23, Section 2].

Definition 2.2 (Perfectoid rings). A perfectoid ring is a ring R with an element ϖ such that
R is ϖ-complete such that

(1) ωp | p
(2) θ : Ainf(R)→ R is surjective and the kernel is principal.

We will not really care if we equip such rings with the ϖ-adic topology.5 We will treat being
ϖ-complete for some element ϖ has a property of the rings in question.

Remark. This definition is the most general and sometimes the best to work with in proofs but
not the best for making examples. Namely we will see that for p-torsion free perfectoids, there
are more amenable conditions to check. We will give examples at this point.

Example 2.3. We can already give the examples (but note that perfectoids are meant to be a
generalization of those) of perfect algebras in characteristic p. The first condition is empty and
the second one is satisfied, the map θ being just the reduction modulo p in this case.

Remark. Note that every perfectoid ring R is a Zp-algebra. Indeed, as (p) ⊂ (ϖ) and that R is
supposed (ϖ)-complete, then it is also p-adically complete by Lemma A.7.6

Remark. The ring Zp is not a perfectoid ring, the ideal (p) being maximal shuts down the
possibility for a ϖ to exist as in the definition. Note that the only p-torsion free perfectoid ring
which is reduced modulo p is the zero ring. Indeed as ϖp | p, if it would be reduced modulo p
then p | ϖ but then pp | p implying that p is a unit, a contradiction to completeness.

We now prove a lemma that allows to reformulate the condition that θ : Ainf(R) → R is
surjective.

Lemma 2.4. The surjectivity of θ : Ainf(R)→ R is equivalent to the three equivalent assertions.

(1) Every element of R/pϖR is a p-th root. (Note that this ring is not necessarily of
characteristic p)

(2) Every element of R/pR is a p-th root.
(3) Every element of R/ϖpR is a p-th root.

Proof. We first prove that (2) is equivalent to θ : Ainf(R) → R being surjective. If so, R♭ →
R/pR is surjective by reducing modulo p. But this surjectivity exactly says (2). But now the
implication is reversible by p-completeness.

Now, ut is clear as ϖp | p | pϖ that (1) implies (2) implies (3). So we only need to prove that
(3) implies (1). As R is ϖ-complete and that we suppose that every element of R/ϖp is a p-th
root we can write any r ∈ R as

r =

∞∑
i=0

rpiϖ
pi

5In the setup of perfectoid spaces, the choice of such a ϖ is part of the data. We note that if we work over
some perfectoid base, only one choice is needed.

6Be careful however, it is not true in general that the p-adic topology is the same as the ϖ-adic topology,
meaning that one can make choices of ϖ where the ϖ topology is coarser than the p-adic topology. This is very
clear if pR = 0, but there is also mixed characteristic examples.
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Now, again by ϖ-adic completeness
∑∞

i=0 riϖ
i is a well defined element. But this is now a

consequence of the binmonial development that( ∞∑
i=0

riϖ
i

)p
−

∞∑
i=0

rpiϖ
pi ∈ pϖR.

□

The parameter ϖ is special with respect to p because up to multiplying by an unit, it admits
pn-power roots for all n ≥ 1, as explains next lemma. Also, actually the same happens with p.

Lemma 2.5. Let R be a perfectoid ring and ϖ as in the definition. Then there exist units
u, v ∈ R× such that uϖ and vp have a compatible system of p-power roots.

Proof. Using Lemma 2.4, every element of R/pϖR is a p-th root. Therefore, take

(xn) ∈ lim←−
(−) 7→(−)p

R/pϖR

such that p = x0 mod pϖ. Using the remark after Lemma 1.16, we know that the natural
map lim←−(−)7→(−)p

R → lim←−(−)7→(−)p
R/ϖpR is a bijection. Say (yn) ∈ lim←−(−)7→(−)p

R is the unique

pre-image of (xn). By construction x0 has a compatible system of p-power roots and x0 =
p + pϖz = p(1 + ϖz), which concludes by completeness. Now note that one could make the
exact same argument with ϖ instead of p. □

Corollary 2.6. In the Definition 2.2, asking (1) is equivalent to ask

(1’) The element ϖ admits a compatible system of p-power roots and ϖp | p
(1”) There is some unit u such that ϖp = pu.
(1”’) The element ϖ admits a compatible system of p-power roots and ϖp = pu for some unit

u.

Also, we can ask that R is p-complete instead of ϖ-complete for some ϖ that satisfies (1).

Remark. Note that for different ϖ1 and ϖ2 as above, the ϖ1 and ϖ2 topology can change. So
in context of Tate perfectoid rings the corollary above can be uneasy.

We will now take a closer look to the kernel of θ.

Definition 2.7 (Distinguished element). Let A be a p-local δ-ring. An element a ∈ A is
distinguished if δ(a) is a unit.

Example 2.8. For example, if B is a perfect algebra in characteristic p, then an element in
(bn) ∈W (B) is distinguished if and only b1 ∈ B×.

Lemma 2.9. Let R be perfectoid. Then ker(θ) is generated by a distinguished element and any
distinguished element in the kernel generates it. More precisely if ϖ is as Definition 2.2 so that
ϖp(−x) = p for some x and admits a compatible system of p-th roots ϖ♭ ∈ R♭, then

ker(θ) = (p+ [ϖ♭]py)

for any y ∈ Ainf(R) pre-image of x.
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Proof. Let us observe the following. Let d ∈ ker(θ) distinguished. Suppose that there is some
d′ ∈ ker(θ) and x ∈ Ainf(R) such that d = d′x in Ainf(R). Then using the law in W2

d1 − d′0x1 = xp0d
′
1

Because R♭ is d′0-complete by Lemma 1.23 we see that x is a unit and that d′ is distinguished.
Therefore, to show the claim it suffices to show that there exists a distinguished element in

the kernel. Indeed, ker(θ) = (d′) for some d′ because we suppose that this kernel is principal.

To this end we now prove the “more precisely” part of the assertion. The element p+ [ϖ♭]py
is clearly in the kernel. In W2 this reads

(0, 1) + (ϖ♭p, 0)(y0, y1) = (0, 1) + (ϖ♭py0, ϖ
♭p2y1) = (ϖ♭py0, 1 +ϖ♭p2y1).

Because R is ϖ-complete, R♭ is ϖ♭-complete. Indeed, a Cauchy sequence for the ϖ♭-topology
in R♭ will be point-wise Cauchy for the (ϖ)-topology, which shows our claim. Therefore we can

deduce that p+[ϖ♭]py is indeed distinguished. The first part of the Lemma now concludes. □

Corollary 2.10. A characteristic p perfectoid is just a perfect algebra.

Proof. If R is perfectoid and pR = 0 then p ∈ ker(θ) implying by Lemma 2.9 that (p) = ker(θ),
concluding. □

The following is a key aspect of perfectoids rings.

Proposition 2.11. Let R be perfectoid and ϖ as in Definition 2.2. Then

(−)p : R/ϖR→ R/ϖpR

is an isomorphism.
Moreover if ϖ has a compatible system of p-power roots ϖ♭ ∈ R♭, then we have a square of

isomorphisms

R♭/ϖ♭R♭ R/ϖR

R♭/ϖ♭pR♭ R/ϖpR

♯

(−)p (−)p

♯

Proof. Because the first statement is insensible to multiplying by units, we can show the second
statement instead by supposing that ϖ has a compatible system of p-power roots by Lemma
2.5. Note that in the square, the left vertical map is an isomorphism because R♭ is perfect.

By Lemma 2.9, we can infer that ker(θ) = (p+[ϖ♭]py) with the same notations. Now consider

Ainf(R)/[ϖ
♭]→ R/ϖR.

By passing to the quotient, we get the desired isomorphism

Ainf(R)/(p+ [ϖ♭]py, [ϖ♭]) = Ainf(R)/(p, [ϖ
♭]) = R♭/ϖ♭R♭ → R/ϖR.

Note that the above argument works exactly in the same manner with ϖp. Therefore both
horizontal maps are isomorphisms, concluding that the right vertical map is also an isomorphism.

□
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Remark. This lemmas show that a perfectoid ring R and it’s tilt R♭ are pro-infinitesimal defor-
mation of the same ring

R♭/ϖ♭R♭
∼−→ R/ϖR.

This hints at the strategy of the proof of almost purity Theorem 2.36.

Remark. Note that the lemma shows that if R is perfectoid and ϖ′ is any element such that
R is ϖ′-complete and ϖ′p | p then the conclusion of Proposition 2.11 holds. For example if

the conclusion holds for ϖ, the conclusion holds for ϖ1/pn if it exists, giving a sequence of
isomorphisms of p-power maps

R/ϖ1/pnR
(−)p−−−→ R/ϖ1/pn−1 → · · · → R/ϖR

(−)p−−−→ R/ϖpR.

Note also the following observation, which complements the preceding remark.

Lemma 2.12. Let R be perfectoid such that pR ̸= 0. Say ϖ is as in Definition 2.2. Then there

is an integer k such that ϖpk does not divide p. In particular up to changing ϖ, we can always

suppose that ϖp2 does not divide p if pR ̸= 0.

Proof. By Lemma 2.5, we can suppose that ϖ has a compatible system of p-power roots. If ϖpk

always divides p, then we have an isomorphism by Proposition 2.11

R♭/ϖ♭pkR♭ R/ϖpkR
♯

for every integer k. Taking the inverse limit implies that R♭ ∼= R a contradiction to pR ̸= 0. □

We now give a more convenient criterion to check if a ring is perfectoid when R is ϖ-torsion
free. For example, in the p-torsion free case.

Definition 2.13 (p-integrally closed). We say that an inclusion of rings A ⊆ B is p-integrally
closed if for all b ∈ B such that bp ∈ A then b ∈ A. Note that every integrally closed extension
is p-integrally closed.

Lemma 2.14. Let R be a ring and ϖ ∈ R a non-zero divisor. Then the p-power map R/ϖR→
R/ϖpR is injective if and only if R→ R[ 1ϖ ] is p-closed.

Proof. We begin by supposing that the p-power R/ϖR → R/ϖpR is injective. Let x ∈ R[ 1ϖ ]
such that xp ∈ R. Let n ≥ 0 be minimal such that ϖnx ∈ R. Suppose by contradiction that
n > 0. We know that (ϖnx)p ∈ R. Therefore by assumption ϖnx ∈ ϖR. As ϖ is a non
zero-divisor this contradicts the minimality of n.

We now suppose that R → R[ 1ϖ ] is p-closed. Then if x ∈ R such that xp = ϖpy, then
(x/ϖ)p ∈ R, and therefore (xϖ) ∈ R. □

Proposition 2.15 (Equivalent definition of perfectoids, torsion free case). Let R be a ϖ-
complete ring, where ϖ is a non-zero divisor and ϖp | p. Then

R is perfectoid ⇐⇒ (−)p : R/ϖR→ R/ϖpR is an isomorphism.

Or, also equivalently, R/pR is semi-perfect and R ⊂ R[ 1ϖ ] is p-integrally closed.

Proof. If R is perfectoid, then the second condition is satisfied by Proposition 2.11.
Suppose now that (−)p : R/ϖR → R/ϖpR is an isomorphism. By Lemma 2.4, wee see that

θ : Ainf(R)→ R is surjective. We therefore only need to show that ker(θ) is principal.
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Note that the proof of Lemma 2.5 applies so that up to multiplying by a unit we can suppose
that ϖ has a compatible system of p-power roots ϖ♭. That R ⊂ R[ 1ϖ ] = R[ 1

ϖ1/pn ] is p-

integrally closed implies that R/ϖ1/pnR
(−)p−−−→ R/ϖ1/pn−1

is injective by Lemma 2.14. Also
the surjectivity is implied by the semi-perfectness of R/pR by Lemma 2.4, which is implied by
(−)p : R/ϖR→ R/ϖpR being surjective again by Lemma 2.4.

Therefore we conclude that p-power maps

R/ϖ1/pnR
(−)p−−−→ R/ϖ1/pn−1 → · · · → R/ϖR

(−)p−−−→ R/ϖpR

are all isomorphisms. This implies that

♯ : R♭/ϖ♭R♭ → R/ϖR

is an isomorphism. Now find, p + [ϖ♭]py in ker(θ) as in Lemma 2.9 with same notations. To

show that this element is a generator of the kernel, as W (R♭) is [ϖ♭]-complete by Lemma A.10

and [ϖ♭]-torsion free because R is ϖ-torsion free, and that R is ϖ-complete, proving the desired

isomorphism W (R♭)/(p+ [ϖ♭]py)→ R modulo [ϖ♭]

W (R♭)/(p, [ϖ♭])→ R/ϖR

is sufficient. Indeed the kernel K of this map is derived complete, and therefore classically
complete by Lemma A.17 with the torsion freeness assumption. But also [ϖ♭]K = K which
implies by separatedness that K = 0. Surjectivity will follow from Lemma A.4.7

But modulo [ϖ♭] this map is exactly the isomorphism R♭/ϖ♭R♭ → R/ϖR proved above.
□

Example 2.16. We now give examples of perfectoid rings, using Propostion 2.15 as criterion.

(1) The p-adic completion Zp[p1/p
∞
]∧,p. Indeed, first this ring is p-complete by construction.

We let ϖ = p1/p. Let us also precise what we mean by taking p-power roots of p. We
realize this has follows8

Zp[p1/p
∞
] = Zp[t1/p

∞
]/(t− p).

Therefore when quotienting the p-adic completion by p we get

Fp[t1/p
∞
]/(t).

Because Fp[t1/p
∞
] is perfect the Frobenius

Fp[t1/p
∞
]/(t1/p)→ Fp[t1/p

∞
]/(t)

is an isomorphism which concludes by Proposition 2.15.
The tilt of this perfectoid is therefore Fp[t1/p

∞
]∧,t by Lemma 1.26.

(2) A perfectoid associated to any p-ramified finite extension of Qp, OK [ϖ1/p∞ ]∧,p. We now
give a generalization of the previous example. Let K be a finite extension of Qp with
residue field k and integral elements OK and ϖ an uniformizer in OK . Suppose that
the degree of ramification of K is at least p, meaning that ϖp | p. Then we consider

OK [t1/p
∞
]/(t−ϖ)

7One could also say that because for [ϖ♭]-torsion free modulesM , thenM⊗W (R♭)/(ϖ♭) = M⊗LW (R♭)/(ϖ♭),
we can use derived Nakayama Lemma A.24 to conclude.

8where Zp[t
1/p∞ ] is the colimit of Zp[t] under t 7→ tp.
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that we denote by OK [ϖ1/p∞ ]. We claim that OK [ϖ1/p∞ ]∧,p is perfectoid. Quotienting
by ϖ before the p-adic (= ϖ-completion) gives

k[t1/p
∞
]/(t).

Therefore, again, because k[t1/p
∞
] is perfect, the map

(−)p : k[t1/p∞ ]/(t1/p)→ k[t1/p
∞
]/(t)

is an isomorphism, proving our claim by Proposition 2.11. Note that here we see that
it is useful to take some ϖ such that the p-th power is not p times a unit to prove our
various above lemmas. Note that this association is functorial in ramified extensions of
Qp of ramification degree at least p. Similarly as above, by Lemma 1.26, the tilt of this

perfectoid is k[t1/p
∞
]∧,t.

(3) Integral elements of Cp, OCp. Let Cp = Q̂p the p-adic completion of the algebraic closure
of Qp. This is again algebraically closed, see Proposition 2.25. This is an algebraically
closed field of the same cardinlity as C so is actually isomorphic to C as field. Consider
OCp the ring of elements of p-adic valuation less or equal to 1. This is a local ring, and

the maximal ideal is given by (p1/p
∞
). The residue field is Fp. Because every element has

a p-power root because it is algebraic closed, we see that OCp is semi-perfect. Also, it is
integrally closed in Cp implying that it is p-integrally closed, and therefore perfectoid.

Now to determine it’s tilt, we actually refer to the proof of Theorem 2.36. Namely
as Cp is the completion of the algebraic closure of Qp(p

1/p∞)∧,p, the tilt of Cp is the

completion of the algebraic closure of Fp(t1/p
∞
). So

C♭p = F̂p(t)

where the completion is t-adic. Taking O
F̂p(t)

gives the tilt of OCp .

(4) Take k to be a perfect field. Consider the mixed characteristic local ring

A =W (k)[[x2, . . . , xd]]

with parameters x1 = p, x2 . . . , xd. We claim the the p-adic completion B of

B′ = A[p1/p
∞
, x

1/p∞

2 , . . . , x
1/p∞

d ]

is perfectoid. That it is residually perfect is clear. We take ϖ = p1/p. We show that
B′ ring is p-integrally closed. This suffices because we care about the injectivity of
(−)p : B/ϖB = B′/ϖB′ → B′/ϖpB′ = B/ϖB. Note first that as W (k) ⊂ W (k)[1p ]

is integrally closed, if a constant is in B′[1p ] then it is actually in B′. Note that any

element in this ring which is not constant has a minimal positive degree. The minimal
degree (in x2 say) coefficient of the p-th power of an element will be the p-th power of
the coefficient of the minimal degree. Therefore using the constant case we get that this
coefficient is already in B. This shows by induction that B is p-integrally closed and
therefore perfectoid.

Using the same technique as above, we see that

B♭ = k[[t, x2, . . . , xd]][t
1/p∞ , x

1/p∞

2 , . . . , x
1/p∞

d ]∧,t
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(5) The p-adic completion R[t1/p
∞
]∧,p, for a p-torsion free perfectoid ring R. Indeed, this

ring is p-adically complete and semi-perfect modulo p. Say ϖp = pu and ϖ admits a
compatible sequence of p-power roots. This is sometimes call the perfectoid A1 although
we stress that this not the initial perfectoid over R[t]. (One can proof using prismatic
cohomology to see that there is no such ring.) The same argument with the minimal
degree concludes that this is perfectoid (using this times that R is integrally p-closed).

Note thatR♭[t1/p
∞
] is perfect and then by Lemma 1.23 (R♭/ϖ♭[t1/p

∞
])♭ = R♭[t1/p

∞
]∧,ϖ

♭
.

The following is good to have in mind.

Lemma 2.17. There is no initial perfectoid ring.

Proof. First note that Fp is perfectoid ring. So if an initial perfectoid ring R would exist then
there is a map R → Fp, necessarily surjective of kernel p. But then Ainf(R) = Zp. Because of
the existence of the map R → Fp, ker(θ) ⊂ (p). But because ker(θ) is principal and generated
by a distinguished element by Lemma 2.9, we conclude that ker(θ) = (p). But we have seen in
Example 2.16 that there are p-torsion free perfectoids.

□

We now address the fact that the ϖ-torsion in perfectoid rings is really tame.

Lemma 2.18 (Bounded torsion). Let B be a perfect algebra in characteristic p which b-complete
for some b ∈ B. Then

(1) d = [b]x+ p ∈W (R) is distinguished for any x ∈W (R),
(2) the ring R =W (B)/d has bounded p∞-torsion. More precisely

R[p] = R[p∞].

(3) The ring R is p-adically complete.
(4) Denote by ϖ the image of [b] in R. Then R has bounded ϖ-torsion. More precisely

R[ϖ1/p∞ ] = R[ϖ] = R[ϖ∞].

(5) The ring R is ϖ-adically complete.

Proof. For item (1), proceed in the same manner as in the proof of Proposition 2.11.
For item (2), we show that if p2x = dy inW (B), then p | y, implying by p-torsion freeness that

px = dy′ for some y′ and implying that R[p] = R[p∞]. Applying δ, we get that δ(dy) ∈ pW (B).
But

δ(dy) = ypδ(d) + δ(y)ϕ(d).

Multiplying by ϕ(y) and using that δ(d) is a unit, we get that ϕ(y)yp = 0 in B, giving the claim.
Now asW (B) is p-complete, R is derived p-complete by Lemma A.21. But by (2) and Lemma

A.17, we deduce that R is classically p-complete.
Because W (B) is p and d-torsion free by Lemmas 1.6 and 1.7 we get by torsion exchange

R[p] =W (B)/(d)[p] ∼=W (R)/(p)[d] = B[d]

where the isomorphism in the middle is in isomorphism of W (B)-modules. Now note that as
ϖ | p we have R[ϖn] ⊂ R[pn] = R[p]. By the isomorphism above R[ϖn] is sent to B[bn], but
now Lemma A.18, concludes.

The proof item (5) is now the same the proof for item (3).
□
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Let us collect results from Lemma 2.18 for perfectoid rings in the following Lemma.

Lemma 2.19. Let R be a perfectoid ring and ϖ as in Definition 2.2. Then

(1) We have
√
ϖR = (ϖ1/p∞). In particular

√
ϖR

2
=
√
ϖR.

(2) All the inclusions

R[
√
ϖR] = R[ϖ1/p∞ ] ⊂ R[ϖ] ⊂ R[ϖ∞]

are equalities.
(3) If ϖp is p times a unit, we can say that all the inclusions

R[
√
pR] = R[ϖ1/p∞ ] ⊂ R[p] ⊂ R[p∞]

are equalities.

In particular any perfectoid as bounded p∞-torsion and bounded ϖ∞-torsion.

Proof. To prove the first item, it suffices to show that R/(ϖ1/p∞) is reduced. But this is

Ainf(R)/(d, [a
1/p∞

0 ]) if d = [a0]x + p for some element x. But then R/(ϖ1/p∞) = R♭/(a
1/p∞

0 )
which is perfect, therefore reduced.

The second and third claim are direct consequences of Lemma 2.18. Indeed, the assertions
are insensible by unit multiplication so we can use Lemma 2.5 and d constructed as Lemma 2.9
to apply Lemma 2.18.

□

The following is a first step in Theorem 2.36, the almost purity theorem.

Proposition 2.20 (Tilting equivalence). Let R be perfectoid and ϖ as in Definition 2.2 ad-

mitting a compatible system of p-power roots ϖ♭ ∈ R♭. Let d ∈ Ainf(R) a generator of
ker(θ : Ainf(R) → R). Then, we have the following equivalences of categories, with opposing
arrows denoting mutually inverse functors.

{R→ S ϖ-complete perfectoid R-algebras}

{Ainf(R)→ D (p, [ϖ♭])-complete perfect δ-Ainf(R)-algebras}

{R♭ → S′ ϖ♭-complete perfectoid R♭-algebras}

♭

Ainf mod d

mod p Ainf

♯

The left composite ♯ is called the untilt.

Proof. Assuming that functors are well defined, we show that they are mutual inverse of cate-
gories. It suffices to treat the case Ainf and modulo d, because Ainf and modulo p is a special
case. Note that θ gives a natural transformation in R → S perfectoid Ainf(S)/d → S. But
because the image of a distinguished element by a δ-map is distinguished, we conclude that this
map is an isomorphism by Lemma 2.9.

The natural transformation θ also gives what we want on the other side. Namely

θ : Ainf((D/d)
♭)→ D

is an isomorphism using the identification (D/d)♭ = D/p by Lemma 1.26 and Corollary 1.22.
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We now show that functors are well defined. Take some ϖ-complete R-algebra S. Then by
Lemmas and 1.24 and A.10, we see that Ainf(S) is (p, [ϖ

♭])-complete. Therefore the Ainf functor
is well defined.

We show that the functor modulo d is well defined. Let D a (p, [ϖ♭])-complete perfect δ-
Ainf(R)-algebra. First, by Corollary 1.22 we can replaceD byW (D/p). Note thatD/p is derived

ϖ♭-complete by Lemma A.21, but then classically ϖ♭-complete by Lemma A.18. Therefore by
Lemma 2.18 we deduce that D/d =W (D/p)/d is ϖ-complete. To show that D/d is perfectoid
we need to show that the kernel of Fontaine’s θ map is principal. But chasing the Teichmüller
lifts, we deduce that the following diagram commutes

W ((D/d)♭)

W (D/p) D/d

D

θ∼

∼
mod d

giving the claim.
□

Remark. We can not avoid any completeness assumption. If ϖ is such that ϖp = pu for some
unit u, we can rewrite the equivalence as

{R→ S perfectoid R-algebras}

{R♭ → S′ ϖ♭-complete perfectoid R♭-algebras}

♭ ♯

So we see that that the natural topology on the tilt is an important data. If there is no topology
mentioned in the first category mentionned in this remark, it is just that the p-complete topology
is implicitly used and not mentionned.

Tilting equivalence 2.20 implies a new equivalent definition of perfectoid rings.

Corollary 2.21 (Perfectoid rings are Hodge-Tate loci of perfect prisms). A perfectoid ring is
a ring of the form W (B)/d where B is perfect and d is distinguished with the property that B
is d-complete. This means, if write d = [b] + px, that B is b-complete.

2.2. Perfectoid fields. Before defining perfectoid fields, we do some recollection on complete
valued fields.

2.2.1. Results on complete valued fields.

Lemma 2.22. Let F be a complete valued field. Let L be an algebraic extension. Then there
exists a unique extension of the valuation of K to L. Namely if x ∈ F ′ where F ′ is a finite

extension if n = [F ′ : F ] then |x| = |NF ′|F (x)|
1
n
F . In particular the norm is invariant by

F -automoprhisms.
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Lemma 2.23 (Krassner’s lemma). Let F be a complete valued field. Let α, β ∈ F sep. If

|α− β| < |α− α′|
for every distinct conjugates α′ of α, then α ∈ F (β).

Proof. Let H be the Galois subgroup of the absolute galois group that correspond to the ex-
tension F (β). We want to show that α is fixed by every σ ∈ H. By contradiction, suppose that
σ(α) ̸= α. Then we have

|α− σ(α)| = |α− β + β − σ(α)| = |α− β − σ(α− β)| ≤ max{|α− β|, |σ(α− β)|}.
By invariance by automorphisms we have

|α− σ(α)| ≤ |α− β| < |α− σ(α)|,
a contradiction. □

Corollary 2.24 (Continuity of separable extensions). Let F be a complete valued field. Let
f(t) ∈ F [t] be an irreducible separable monic polynomnial, with roots (αi). Then for every ϵ > 0
sufficiently small, there exists a δ > 0 such that for every monic polynomial g ∈ F [t] of the
same degree as f with ∥f − g∥ < δ then there is a numbering of the roots (βi) of g such that
|αi − βi| < ϵ and F (αi) = F (βi). Also, g is irreducible and separable.

Proof. As the roots vary continuously in the coefficients, we can arrange that

|αi − βi| < min
i ̸=j

(|αi − αj |).

Then by Krassner’s lemma, we see F (αi) ⊂ F (βi). But as
[F (βi) : F ] ≤ deg(g) = deg(f) = [F (αi) : F ],

we deduce F (αi) = F (βi). □

Proposition 2.25. Let F be a complete valued field and F0 ⊂ F a dense subfield. Then F is
separably closed if and only if F0 is.

2.2.2. Perfectoid fields.

Remark. Note that a perfectoid ring which is a field is automatically discrete in characteristic
p. Therefore we see that Proposition 2.20 is basically not interesting in this case. However as
seen in Example 2.16, interesting fields appear when we invert ϖ (or p) on a perfectoid local
ring. So see next definition and beware, a perfectoid field is not a field which is a perfectoid
ring.

Definition 2.26 (Perfectoid field). A perfectoid field is a complete non-archimedan field K
with residue field of characteristic p and rank 1 valuation such that bounded elements K◦ is a
perfectoid ring. (This implies that the associated rank 1 valuation is non discrete).

Remark. In this setup, we always have K◦[ 1ϖ ] = K for any ϖ such that |ϖ| < 1.

Note that an immediate application of the tilting equivalence 2.20 for perfectoid rings yields
(inverting ϖ and ϖ♭)

Proposition 2.27 (Tilting equivalence – field extensions). Let K be a perfectoid field. Then
the tilt functor is an equivalence of categories,

{Perfectoid fields over K} → {Perfectoid fields over K♭}.
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Next lemma follows for example from properties of the untilt map on the level of ring of
integers.

Lemma 2.28. Let K be a perfectoid field and K♭ it’s tilt. If |·| is a rank 1 valuation on K that

gives K it’s topology, then |·| ◦ ♯ is a rank 1 valuation on K♭ that gives K♭ it’s topology.

Proposition 2.29 (Proof due to Kedlaya). Let K be a perfectoid field. If K♭ is algebraically
closed, then K is also.

Proof. The idea of proof goes as follows.

(1) Using completeness, we will get roots by successive approximation.

(2) In order to do this approximation, we will find roots in K♭◦ using the transfer principle
of Proposition 2.11

K♭◦/ϖ♭K♭◦ ∼= K◦/ϖK◦.

Once will get what we want in K♭◦ will take the untilt of it.

Let f(T ) ∈ K◦[t] be a monic polynomial of degree d ≥ 2. We will construct a sequence
(xn)n≥0 such that,

(1) |f(xn)| ≤ |ϖ|n,
(2) and |xn+1 − xn| ≤ |ϖ|

d
n ,

which will conclude. To do so, we start very naively. Let x0 = 0. Now we take care of the
induction step. Let

f(xn + T ) =
d∑
i=0

biT
i.

Note that this polynomial is monic with b0 = f(xn). If b0 = 0, there is no need to continue.
Suppose then that b0 ̸= 0. We claim the following.

Claim (1). We can find u ∈ K◦ such that,

(1) bi
b0
ui ∈ K◦.

(2) There is at least j > 1 such that
bj
b0
ui ∈ K◦×.

(3) |u| ≤ |ϖ|
n
d .

We postpone the proof of this claim to later. Denote then by g(T ) any lift of
∑d

i=0
bi
b0
uiT i

via

K♭◦/ϖ♭K♭◦ ∼= K◦/ϖK◦.

We also postpone the proof of the following.

Claim (2). Let K be a complete and algebraically closed rank 1 valuation field. Let g ∈ K◦[T ]
be a polynomial of degree at least one such that there exists at least one coefficient (other than
the constant coefficient) which is a unit in K◦. Then g has a root in K◦.

Note that if the other unit is the leading one, this is immediate because K◦ is integrally
closed.

We continue the proof assuming claim (2). Note that the hypothesis of claim (1) assures

that g(t) satifies the hypothesis of claim (2). Let then y ∈ K♭◦ with g(y) = 0. Now define
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xn+1 = xn + u♯(y). We have

f(xn+1) = f(xn + u♯(y)) =

d∑
i=0

biu
i♯(y)i = b0

(
d∑
i=0

bi
b0
ui♯(y)i

)
.

Therefore, by construction the expression in parenthesis vanishes modulo ϖ. Then,

(1) |f(xn+1| ≤ |b0| |ϖ| ≤ |ϖn| |ϖ| = |ϖ|n+1 ,

(2) and |xn+1 − xn| = |u♯(y)| ≤ |u| ≤
∣∣∣ϖ n

d

∣∣∣.
We now prove both claims.

Proof of claim (1). Note that the value groups of K and K♭ are isomorphic. As K♭ is alge-

braically closed the value group is a Q-vector space. So take an element u such that |u| =
∣∣∣ b0bj ∣∣∣ 1j

where j is a positive integer such that the following minimum is attained

min{
∣∣∣∣b0bi
∣∣∣∣1/i bi ̸= 0}.

Note that this minimum is less than |b0|
1
d ≤ |ϖ|

n
d .

Proof of claim (2). First note the following fact : if K is rank 1 valuation field, then any non
zero element π of the maximal ideal K◦◦ is a pseudo-uniformizer. In particular we can take
a pseudo-uniformizer π such that g is monic with invertible constant coefficient in R/πR. It
follows that,

S = R < T > /g(T )

is a finite free R-algebra (because it is the case modulo ϖ.) As K is algebraically closed Sred[
1
ω ]

is a product of copies of K. This leads to a map S → K. But as S is finite, it is integrally
closed so this factors trough S → R. Now the image of T is a desired root. □

2.3. Almost toolbox. This section is dedicated to result of almost flavor that are needed to
prove almost purity Theorem 2.36. We fix a ϖ-torsion free perfectoid R. We denote by9

R◦◦ =
√
ϖR = (ϖ1/p∞).

By Lemma 2.19 we have (R◦◦)2 = R◦◦.
Here are some definitions.

Definition 2.30. Let M be a R-module.

(1) We say that M is almost zero if R◦◦M = 0.
(2) A morphism of R-modules is said to be almost injective, almost surjective and an almost

isomorphism respectively if the kernel is almost zero, the cokernel is almost zero or both
are almost zero.

Remark. Note that a module M is almost zero if and only if for all n ≥ 0 we have ϖ
1
pnM = 0.

Here’s the crucial observation.

Lemma 2.31. The full sub-category of almost zero R-modules is stable by extension and stable
by all limits and colmits.

9In the theory of Tate analytic rings, this denotes topologically nilpotent elements, and if we equip R with
the ϖ-adic topology, this correspond.
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Proof. Only crucial point, for extensions, where R◦◦2 = R◦◦ allows for the argument to go
through. □

Note that therefore we can consider the quotient by this sub-category and get again an abelian
category.

The most important application of this setup for almost purity is than we can relate almost
information on M and almost information on M/ϖM (see Theorem 2.36). Here is an example
of such a phenomenon.

Lemma 2.32. Let M a ϖ-adically separated R-module. Then M is almost zero if and only if
M/ϖM is almost zero.

Proof. Suppose that M/ϖM is almost zero. This means that R◦◦M ⊂ ϖM , and therefore
R◦◦M = ϖM . Multypliing by R◦◦ we get R◦◦M = ϖR◦◦M (here the crucial property is used).
By induction, we conclude

R◦◦M = ϖnR◦◦M.

□

We now prove some lemmas needed to prove almost purity in the case of fields.
The following definition is not standard but suffices for our needs.

Definition 2.33. Let M be a R-module. Let ϵ ∈ R◦◦. M is ϵ-almost free of rank d if there is
a map R⊕d →M with both kernel and cokernel killed by ϵ.

Here is a again an example of exchange of almost information on R and on R/ϖR.

Lemma 2.34. Let M be a ϖ-torsion free R-module. Let n ≥ 1. Then M is ϖ
1
pn -almost free

of rank d if and only if M/ϖM is.

Proof. Note that as R⊕d is ϖ-torsion free, the map that need to exist in the definition needs to
be injective.

First, we suppose that there is a map R⊕d (m1,...,md)−−−−−−−→ M with cokernel killed by ϖ
1
pn . The

induced map at ϖ-quotient will also have a cokernel killed by ϖ
1
pn . Note that this equivalent

to

ϖ
1
pnM ⊂ R(m1, . . . ,md).

We show that the kernel of the induced map at ϖ-quotient is killed by ϖ
1
pn . Let (λi) ∈ R⊕d be

an element of the kernel, so that
d∑
i=0

λimi = ϖm′

Multiply this by ϖ
1
pn .

d∑
i=0

ϖ
1
pn λimi = ϖϖ

1
pnm′

Therefore let (µi) ∈ R⊕d such that

ϖ
1
pnm′ =

∑
i

µimi.
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Therefore, ∑
i

(ϖ
1
pn λi −ϖµi)mi = 0.

Using injectivity, we see that ϖ
1
pn (λi) = ϖ(µi) which concludes.

For the other direction, suppose that there is a map

(R/ϖR)⊕d
(m1,...,md)−−−−−−−→M/ϖM,

with kernel and cokernel both killed by ϖ
1
pn . Take any lift of the map

R⊕d (m1,...,md)−−−−−−−→M.

As

R(m1 . . . ,md) ⊂ ϖ
1
pnM +ϖM ⊂ ϖ

1
pnM,

the corkenel of this map is killed by ϖ
1
pn . We now show that this map is injective to conclude

the proof. In what follows we denote by π = ϖ
1
pn . Let (λi) be in the kernel. By hypothesis,

there exists (µi) such that π(λi) = πp
n
(µi). So that (λi) ∈ πp

n−1R⊕d. As M is ϖ torsion-free,
it also follows that (µi) is in the kernel. Therefore, by induction for every k ≥ 1,

(λi) ∈ πkp
n−kR⊕d.

As n ≥ 1, this concludes. □

The following lemma is key to the proof of almost purity.

Lemma 2.35. Let K be a perfectoid field of characteristic p and L be a finite field extension.

Let n ≥ 0. Then the OK-module OL is ϖ
1
pn -almost free of rank [L : K].

Proof. Denote by d the rank of the extension. Note that L is a separable extension because
K is perfect. Therefore the trace pairing is non-degenerate. In particular for K → L, let

e =
∑d

i=0 ei ⊗ e∗i ∈ L ⊗K L be the canonical element corresponding to the trace. Here is the
crucial calculation. Let N be enough such that ϖNei, ϖ

Ne∗i ∈ OL. As OK is perfect, it follows

that ϖN/pn ∈ OK . Therefore for every b ∈ OL we get that,

ϖ2N/pnb =
d∑
i=0

ϖN/pneiTr(ϖ
N/pne∗i b).

It now follows that the map,

O⊕d
K

(ϖN/pnei)−−−−−−→ OL

is injective of cokernel killed by ϖ
2N
pn . □
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2.4. Almost purity for fields. We prove in this section almost purity in the case of perfectoid
fields.

Theorem 2.36 (Almost purity – point case.). Let K be a perfectoid field. First of all if L is a
finite extension over K, then it is a perfectoid field. Then, the tilt functor is a degree preserving
equivalence of caetgories,

{Finite extensions of K} → {Finite extensions of K♭}.
Therefore, fixing an algebraic closure on both sides (so a colimit of all finite extensions) will
canonically produce one on the other. Therefore up to fixing an algebraic closure on one side,

Gal(K,K) ∼= Gal(K♭,K♭).

Proof. Note that in characteristic p seeing that if L is a finite extension ofK♭ then L is perfectoid
is easy. By elementary theory of valuations, there exist a unique valuation on L that extends
the one on K and for which L is complete (and necessarily discretely valued as K is).

Also, we already know by Proposition 2.27 that we have an equivalence of categories

{Perfectoid fields over K} → {Perfectoid fields over K♭},
but we know nothing about how it preseves the finiteness.

Claim (1). The untilt functor restricts and factors to

{Finite perfectoid fields over K♭} → {Finite fields over K}

Proof of claim (1). Let L be a finite extension of K♭, say of degree d.

• By lemma 2.35, OL is almost finite free of degree d over OK♭ .

• By lemma 2.34, OL/ϖ♭OL is almost finite free of degree d over OK♭/ϖ♭OK♭ .
• By the ♯ isomorphism of Proposition 2.11, OL♯/ϖOL♯ is almost finite free of degree d
over OK/ϖOK .
• By lemma 2.34, OL♯ is almost finite free of degree d over OK .
• So it follows that L♯ is a finite K module by inverting ϖ.

We are left to show that the following composition

{Finite fields over K♭} ♯−→ {Finite fields over K which are perfectoid} ⊆ {Finite fields over K},
is essentially surjective. To this end, let E be the completion of the algebraic closure ofK♭. Note
that this is algebraically closed by Krasnner’s lemma. Therefore by proposition 2.29 N = E♯ is
also algebraically closed. Let M =

⋃
L♯ ⊂ N for L finite over K♭. Note that M is dense in N

because on the level of ring of integers the inclusion is an isomorphism modulo ϖ. This can be
seen commuting comilits and using the untilt isomorphism of Proposition 2.11. By Krassner’s
lemma, M is algebraically closed.

Now if E is a finite extension of K, as K ⊂ M is an algebraically closed extension, we have
E ⊂ M , so E ⊂ L♯ for a finite Galois extension L of K. As the ♯ functor is fully-faithful and
the untilt is degree preserving L♯ is also Galois. So as the untilt is fully faithufl, by cardinality
on isomorphism classes the following composition is essentially surjective

{Sub-extensions of L over K♭} ♯−→ {Sub-extensions of L♯ over K which are perfectoid}

⊆ {Sub-extensions of L♯ over K},
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and this concludes the proof. □

We mention the following general case.

Theorem 2.37 (Almost purity – general case). Let (A,A+) be a perfectoid Huber pair. First
of all if (B,B+) is finite étale over (A,A+), then it is a perfectoid Huber pair. Then, we have
the following equivalences of categories

{Finite étale (A,A+)-algebras} {Finite étale (A♭, A+♭)-algebras}

{Almost finite étale A+-algebras} {Almost finite étale A+-algebras}

{Almost finite étale A+/ϖA+-algebras} {Almost finite étale A+♭/ϖA+/ϖ♭A+♭-algebras}

♭

[ 1
ϖ
]

mod ϖ

[ 1

ϖ♭
]

mod ϖ♭

∼

Let X be a perfectoid space. Then ♭ : X → X♭ induces an equivalence of étale sites

Xet
∼= X♭

et.
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Appendix A. Miscellany on completeness

A.1. Classical. For the remaining of this section R is a ring and I is a finitely generated module.
We essentially re-arrange and rephrase lemmas from [Sta24, Section 00M9] and [GR18, 8.2

and 8.3].

Definition A.1 (I-adic topology, completeness). Let M be a R-module. The I-adic topology
on M is the topology turning M into a topological abelian group with subgroups (InM)n∈N
being open neighbourhoods of zero. Let (xn), (yn) ∈MN be sequences.

(1) We say that a sequence (xn) converges to zero if for every N ∈ N there is n0 such that
for every n ≥ n0 we have xn ∈ INM .

(2) We say that (xn) is Cauchy if for every N ∈ N there is some n0 such that for every
n,m ≥ n0 such that xn − xm ∈ INM .

(3) We say that two Cauchy sequences (xn) and (yn) are equivalent if (xn − yn) converges
to zero.

(4) We say that (xn) converges to x if (xn) is equivalent to the constant sequence with value
x.

(5) We say thatM is I-adically complete if every Cauchy sequence has a unique limit inM .

Remark. Equipping R with the I-adic topology turns M with the I-adic topology into a topo-
logical R-module.

Remark. Topological abelian groups always have a completion M →M∧ realized has the quo-
tient of the abelian group of Cauchy sequences by the subgroup of Cauchy sequences equivalent
to zero (see [GR18, Theorem 8.2.8]). When the topology is I-adic, the completion can be
realized as an inverse limit as shows the next lemma.

Lemma A.2 (I-adic completion). Let M be a R-module. Equip it with the I-adic topology.
Then there is an homeomorphism of topological R-modules

M∧ ∼= lim←−
n

M/InM

where the topology on the right is given by the inverse limit topology which each component being
equipped with the discrete topology.

Proof. We first define a compatible collection of continuous maps pn : M
∧ → M/InM . Given

a Cauchy sequence (xk), note that xk mod In does not depend on k for large enough k, so we
can define this to be pn. Also, it is clear that two equivalent sequences give the same value on
pn. This is another way of saying that we extend by the completeness property the continuous
map M →M/InM .

We construct an inverse map. Given an element (mn) ∈ lim←−nM/InM , any lift (mn) ∈ MN

is a Cauchy sequence. Also, we see that two different lifts give equivalent Cauchy sequences.
Convergent sequences in lim←−nM/InM are eventually constant sequences, and the continuity
follows from checking that convergent sequences are sent to convergent sequences. □

Remark. We can therefore treat I-adic completeness for a moduleM as being the property that
the natural map M → lim←−nM/InM is an isomorphism.

https://stacks.math.columbia.edu/tag/00M9
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Definition A.3 (I-adic completion). Let M be a R-module. The I-adic completion is defined
to be

M∧,I = lim←−
n

M/InM.

The natural topology to consider is the topology of the inverse limit. By Lemma A.2 the I-adic
completion is the completion of M if we equip M with the I-adic topology.

Lemma A.4 (Preserving surjections). Let φ : M → N be a map of R-modules such that
M/IM → N/IN is surjective, then M∧,I → N∧,I is surjective. In particular this holds if
M → N is surjective.

Proof. Note first that M/InM → N/InN is surjective using Nakayama with the nilpotent ideal
I in R/In. Say

Kn = ker(M/InM → N/InN).

It suffices to show that the natural map Kn+1 → Kn is surjective implying that R1 limKn = 0
and therefore the claimed surjectivity. Let x ∈ M be a lift of an element in Kn. Therefore
φ(x) ∈ InN . Note that N = φ(M) + IN by assumption. So φ(x) ∈ φ(InM) + In+1N . But
then there is y ∈ InM such that φ(x− y) ∈ In+1N , which concludes.

□

The following holds when I is finitely generated.

Lemma A.5 (I-adic completion is I-adically complete.). LetM be a module. Then the topology
on M∧,I is the I-adic topology. In particular M∧,I is I-adically complete.

Proof. Using Lemma A.2, it suffices to prove that In(M∧,I) = ker(M∧,I →M/InM). Because
we suppose that I is finitely generated, we can construct a surjection M⊕k → InM that leads
to a surjection

(M∧,I)⊕r → (InM)∧,I = lim←−
m

InM/In+mM = ker(M∧,I →M/InM).

But the image of this surjection is exactly In(M∧,I).
□

Lemma A.6 (Units and completion). Let R be I-adically complete. Then r is a unit if and
only if it is a unit modulo I.

Proof. For the non-trivial direction, r will be a unit in R/In for all n if it is a unit in R/I.
But then as R = lim←−nR/I

n we see that r is component-wise invertible in
∏
nR/I

n which
concludes. □

Lemma A.7 (Completeness is preserved under finer adic topologies). Let I ⊂ J be ideals of
R. Let M be an R-module. If M is J-adically complete, then M is also I-adically complete.

Proof. Note that has M is J-adically separated, M is also I-adically separated. Let then (xn)
be a Cauchy sequence for the I-adic topology. Let x be the limit in the J-adic topology.

Say I = (f). Up to taking a subsequence we can suppose that xn − xn+1 ∈ In. Therefore we
can write

xn − xn+1 = fnzn.
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But then for any m ≥ n we have

xn − xm =
m−1∑
k=n

(xk − xk+1) =
m−1∑
k=n

fnzn = fn(
m−1∑
k=n

znf
k−n).

We can take the limit in m for the J-adic topology of the above to get

xn − x = fnyn

for some yn. It shows the claim when I is generated by one element.
Now, note that if I = (f1, . . . , fr) then a basis of neighborhoods of zero is given by ideals

(fn1 , . . . , f
n
r ) when n varies. So in the above, up to taking again a subsequence, we can suppose

that

xn − xn+1 =

r∑
i=1

fni zi,n.

So one can redo the same proof, up to writing an additional sum. □

Definition A.8. Let M be a R-module. We equip M with the I-adic topology. We say that
a submodule N ⊂ M is Artin-Ress if the a priori finer I-adic topology on N agrees with the
subspace topology. This is equivalent to the following. For every n there is some N ≥ n with
the property that

(INM) ∩N ⊂ InM.

See [Sta24, Lemma 00IN] or [GR18, Theorem 11.4.46] for conditions where this holds.

Lemma A.9 (Exactness of I-adic completion). Let M be an R-module and N ⊂M an Artin-
Rees submodule. Then

0→ N∧,I →M∧,I → (M/N)∧,I → 0

is exact.

Proof. Because we suppose that the I-adic topology on N is the subspace topology, the I-adic
completion correspond to the completion with respect to the subspace topology on N . Note
that the quotient topology on M/N is the I-adic topology. Therefore, we are asked to show
that the completion functor if we equip N and M/N with their natural topologies is exact.
Note that by Lemma A.4 the right arrow is surjective.

We use to this effect the description of the completion as the quotient of Cauchy sequences.
That the first map is injective is easily seen with this perspective, using again that we equip N
with the subspace topology. We are left to show that the map is exact in the middle. Take a
Cauchy sequence (π(mn)) ∈ (M/N)N if π : M → N denotes the quotient map. Then this means
that for any k there is some n(k) such that we have mn(k) ∈ N + IkM . So take hn(k) ∈ N such

that mn(k) − hn(k) ∈ IkM . It follows that we have Cauchy sequences (hn(k)) and (mn(k)) in k
which are equivalent by construction and with (hn(k)) being Cauchy in N . □

Lemma A.10 (Completeness and Witt vectors). Let R be a perfect algebra which is ϖ-complete
for some ϖ ∈ R.

(1) Rings Wn(R) are (p, [ϖ])-complete.
(2) The ring W (R) is (p, [ϖ])-complete.

https://stacks.math.columbia.edu/tag/00IN


34 LÉO NAVARRO CHAFLOQUE

Proof. For item (1), as p is nilpotent, we actually need to show that Wn(R) is [ϖ]-complete.
We equip Wn(R) with the [ϖ]-topology and proceed by induction with the case n = 1 being an
hypothesis.

Note that R ∼= Vn(R)/Vn+1(R) is an Artin-Rees submodule. Indeed being in Vn(R)/Vn+1(R)
means that the first component n-th components are zero. But if the first n-th components
of [ϖ]k(xi) are zero then [ϖ]k(xi) = [ϖ]k(0, 0, . . . , xn). Also, this sub-module is isomorphic as
a topological R-module to R. But now the induction step goes using a five lemma argument
involving the exact sequences of Lemma 1.14 and Lemma A.9.

For item (2), using item (1), we see that W (R) = lim←−nWn(R), with the limit topology with

the topology on each factor being the (p, [ϖ])-topology, is complete. Let πn : W (R) → Wn(R)
the projection. The aforementionened limit topology is given by the system of neighborhoods
of zero (indexed by n and k) π−1

n ([ϖ]k) = (pn, [ϖ]k), which concludes.
□

A.2. Derived. Derived complete modules have better homological properties (Lemma A.21)
and fit into the local duality philosophy (Theorem A.14). There is also a tight connection
between the classical and the derived notions which we highlight (Lemmas A.17 and A.19).

A.2.1. Local duality yoga and derived completions. References for this section are [BHV18, Sec-
tion 2 and 3], [HPS97], [Sta24, Tag 091N], [Sta24, Tag 0A6V], [DG00] and [BS14, Section
3.4].

Let R be any ring. We consider D(R) the stable ∞-category of R-modules. We also fix a
finitely generated ideal together with generators I = (f1, . . . , fn).

Definition A.11 (Koszul complexes, [Sta24, Section 0621]). Let f ∈ R. We define Kos1(f) =

fib(R
r−→ R). Therefore, seen as a complex

Kos1(f) = (R
f−→ R)

with the source in degree zero. Let f1, . . . , fr ∈ R. We define

Kos1(f1, . . . , fr) =

r⊗
i=1

Kos(fi).

As a complex, this can be seen as the exterior algebra
∧
Rn with differentials given by multi-

plication by the fi along the simplicial identities. This can be seen as coming from the tensor
product in the category of chain complexes. We define

Kosn(f1, . . . , fr) = Kos1(fn1 , . . . , f
n
r ).

We define Kos∞(f1, . . . , fr) = lim−→n
Kosn(f1, . . . , fr).

Remark. Note that Kos∞(f) = fib(R → R[f−1]), because R[f−1] = lim−→(R
f−→ R

f−→ · · · ).
Extending on this argument one can see ([Sta24, Tag 0913]) that

Kos∞(f1, . . . , fr) = fib(R→ Č(f1, . . . , fr))

where Č(f1, . . . , fr)) is ∏
i

Rfi →
∏
i<j

Rfifj → · · · → Rf1···fr

https://stacks.math.columbia.edu/tag/091N
https://stacks.math.columbia.edu/tag/0A6V
https://stacks.math.columbia.edu/tag/0621
https://stacks.math.columbia.edu/tag/0913
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the alternating Čech complex of R for the cover of U = Spec(R) \ V (f1, . . . , fr) =
⋃n
i=1D(fi).

But this last complex is RΓ(U,OU ), because it is quasi-isomorphic to the usual Čech complex,
see [Sta24, Tag 01FM]. Therefore we deduce a fiber sequence

Kos∞(f1, . . . , fr)→ R→ RΓ(U,OU ).
In consequence, we see that Kos∞(f1, . . . , fr) only depends on the topological closed subset
V (f1, . . . , fr). See next definition.

Definition A.12 (Local cohomology). Let R be a ring and I be an ideal and denote by
U = Spec(R) \ V (I). We define

RΓI(R) = fib(R→ RΓ(U,O))
and call it the I-local cohomology of R. In the above setup, if I = (f1, . . . , fr), we see that

RΓI(R) = Kos∞(f1, . . . , fr).

As a complex, this can be therefore seen as the augmented Čech complex

R→
∏
i

Rfi →
∏
ij

Rfifj → · · · → Rf1···fr

with R in degree zero.

Remark. Note that localizing at every f ∈ I yields an isomorphism Rf → RΓ(U,O)f =
RΓ(D(f),O) implying that RΓI(R) is I-torsion. In fact, this is the universal torsion object
mapping to R, as we will soon explain.

Definition A.13 (Left orthogonals). Let C be a stable ∞-category. Let D ⊆ C be a full-
subcategory of C. The left orthogonal D⊥ is defined as the full subcategory whose objects
Y ∈ C are those satisfying Hom(X,Y ) = 0 for any X ∈ D. Here Hom denotes the spectrally
enriched mapping space. This is the object underlying RHom(X,Y ) in the homotopy category.

We define now various sub-stable ∞-categories of D(R).
(1) The full subcategory D(R)I−tors such that homotopy groups are In-torsion for some n.

This is seen to be the smallest localizing sub-category containing the perfect complex
Kos1(I) = Kos1(f1, . . . , fn). It is therefore presentable and compactly generated by one
object.

(2) The category D(R)U−loc of U = Spec(R) \ V (I)-local objects is defined to be the left
orthogonal of D(R)I−tors.

(3) The category D(R)I−comp of I-complete objects is defined to be the left orthogonal of
D(R)U−loc.

It follows formally that these categories are well behaved, first of all stable, but also inclusion
into D(R) will be adjunctions with good properties by the adjoint functor theorem [HTT, Cor.
5.5.2.9] and the structure of left orthogonal sub-categories [HPS97, Theorem 3.3.5]. We resume
all these properties in the following Theorem.

https://stacks.math.columbia.edu/tag/01FM
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Theorem A.14 (Local duality). Let R be a ring, and I a finitely generated ideal.

(1) The three sub-stable ∞-categories D(R)I−tors, D(R)U−loc, D(R)I−comp arrange them-
selves in the following diagram of adjunctions

D(R)U−loc

D(R)

D(R)I−tors D(R)I−comp

RΓU

RΓI

ΛI

where RΓI the I-local cohomology is a right adjoint, and RΓU and ΛI the cohomology
in U and the derived completion are left adjoints.

(2) We have

ker(RΓU ) = D(R)I−tors ker(ΛI) = ker(RΓI) = D(R)U−loc

(3) Functors RΓI and RΓU are smashing, meaning that for M ∈ D(R)

RΓI(M) =M ⊗RΓI(R) RΓU (M) =M ⊗RΓU (R),

and RΓI(R) and RΓU (R) are described by the complexes defined above, so the augmented
Čech complex and the Čech complex respectively. In consequence we have the fiber
sequence

RΓI(M)→M → RΓU (M).

(4) We have natural equivalences RΓIΛI = RΓI and ΛIRΓI = ΛI . This means that local
cohomology does not see completion and that completion does not see local cohomology.

(5) Functors

RΓI : D(R)I−comp → D(R)I−tors ΛI : D(R)I−tors → D(R)I−comp
are mutually inverse equivalences of categories.

(6) If Hom denotes the enriched internal Hom, then for any M,N ∈ D(R) we have

Hom(RΓIM,N) = Hom(M,ΛIN)

in particular ΛIN = Hom(RΓI(R), N). Therefore one can use the augmented Čech
complex to compute the derived completion.

(7) If I = (f1, . . . , fr) and R/
L(fn1 , . . . f

n
r ) denotes the derived quotient ring, then

ΛIN = lim←−
n

N ⊗R/L(fn1 , . . . fnr ).

Proof. Items (1)-(2)-(3) are formal consequences of the adjoint functor theorem [HTT, Cor.
5.5.2.9] and the structure of left orthogonal sub-categories [HPS97, Theorem 3.3.5]. Let us
explain how we get the consequences. To get (4), apply ΛI to

RΓI(M)→M → RΓU (M)

and (2) to get RΓIΛI = RΓI . Note also that the left term in

fib(M → ΛIM)→M → ΛIM
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is U -local, so applying RΓI gets the second claim. Item (5) follows from (4) using that RΓI and
ΛI are naturally isomorphic to identities functors on D(R)I−tors and D(R)I−comp respectively.

Item (6) is an adjunction play-around together with (5), as shown below.

Hom(RΓIM,N) ∼= Hom(RΓIM,RΓIN)

∼= Hom(ΛIRΓIM,ΛIRΓIN)

∼= Hom(ΛIM,ΛIN)

∼= Hom(M,ΛIN).

For item (7), we clarify what we mean by derived quotient ring. Namely we look at R as a
Z[x1, . . . , xr] algebra sending xi 7→ fi and we consider the animated ring

R⊗LZ[x1,...,xr] Z[x1, . . . , xr]/(x
n
1 , . . . , x

n
r ).

Note that has a complex, we can compute this tensor product using a projective resolution of
Z[x1, . . . , xn]/(xn1 , . . . , xnr ). Because (xn1 , . . . , x

n
r ) is regular, we can take as a resolution

Kosn(x1, . . . , xr) = Σr Kosn(x1, . . . , xr) = Hom(Kosn(f1, . . . , fr), R).

The shift is here so that the last non-zero term is in degree zero, so that is it is indeed the
desired projective resolution. Therefore, as a complex, the considered animated ring is

Kosn(f1, . . . , fr) = R/L(fn1 , . . . f
n
r ).

We now proceed to the proof of the statement. We have

ΛIN ∼= Hom(RΓI(R), N)

∼= Hom(RΓI(R), N)

∼= Hom(lim−→
n

Kosn(f1, . . . , fr), N)

∼= lim←−
n

Hom(Kosn(f1, . . . , fr), N)

∼= lim←−
n

Hom(Kosn(f1, . . . , fr), R)⊗N

∼= lim←−
n

Kosn(f1, . . . , fr)⊗N.

□

Example A.15. Let A be a Noetherian local ring, let K denotes it’s fraction field. Then as
K/A = RΓm(A)[1] we have

ΛmK/A = (ΛmRΓm(A))[1] = ΛmA[1] = Am,∧[1]

where the equality with the classical completion follows from Lemma A.17.

A.2.2. Properties of derived completion. We now inspect how derived completion behaves when
we start from ordinary modules.

Definition A.16 (Derived complete module). We say that an R-module M is derived I-
complete if M ∈ D(R)I−comp, meaning that it is derived complete when seen as an object
of the derived category.
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Remark. A module M is I-derived complete if and only if HomR(Rf ,M) = Ext1R(Rf ,M) = 0
for every f ∈ I because Rf has a projective resolution of length 2 writing the direct colimit as
a coequalizer, and that Rf for f ∈ I are generators for U -local objects.

Remark. Let us expand on Theorem A.14 to understand more how to compute derived comple-
tion. Say N is a discrete module. We have seen in the proof that

ΛIN = lim←−
n

Hom(Kosn(f1, . . . , fr), N).

Because Kosn(f1, . . . , fr) can be seen as a complex of projective modules, then cohomology of
Hom(Kosn(f1, . . . , fr), N) can be computed has the homology of Kosn(N ; f1, . . . , fr) = N ⊗L
R/L(fn1 , . . . , f

n
r ) which is a complex concentrated in homological degree [0, r]. Write Nn for this

complex. Then, from the usual sequences for derived inverse limits ([Sta24, Tag 0CQE]) we
have exact sequences for every k ∈ Z,

0→ R1 lim←−
n

Hk−1(Nn)→ Hk(ΛIN)→ lim←−
n

Hk(Nn)→ 0.

This is a tool to compute homotopy groups of the derived completion.
In particular for k = 0 we get

0→ R1 lim←−
n

H−1(Nn)→ H0(ΛIN)→ lim←−
n

M/(fn1 , . . . , f
n
r )→ 0,

seeing that the π0(ΛIM) always surject to the classical completion.
Note that for k > 0 we have Hk(Nn) = 0 because Nn is connective. Also for k > 0

the system (Hk−1(Nn))n is Mittag-Leffler because it is either identically zero or the system
(M/(fn1 , . . . , f

n
r ))n when k = 1. Therefore we deduce that ΛIN is connective by vanishing of

R1 lim←−n in this range. Note also that for k < −r both extremities of the exact sequence are also

zero because Nn is concentrated in homological degrees [0, r], concluding therefore that ΛIN is
concentrated in homological degrees [0, r].

Remark. We expand on the last remark. Namely we treat the case where I = (f) is principal.
In this case

Kosn(M ; f) = (M
fn−→M)

with the target in degree zero. The system where we want to take the derived inverse limit on
is

M M

M M

fn+1

f =

fn

In particular we see that π1(Kosn(M ; f)) =M [fn] the fn-torsion of M . The inverse system on

π1 is given by the maps (· · ·M [fn+1]
f−→M [fn]→ · · · ). We have two pertinent exact sequences

in this case; one gives

0→ R1 lim←−
n

M [fn]→ π0(ΛIN)→ lim←−
n

M/fn → 0,

while the other yields π1(ΛIN) = lim←−nM [fn]. This description is enough to get our first
important result.

https://stacks.math.columbia.edu/tag/0CQE
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Lemma A.17 (Classical vs. derived (1)). Let N be a discrete module with bounded f∞-torsion,
meaning that the sequence of submodules

M [f ] ⊂M [f2] ⊂ · · ·M [fn] ⊂ · · ·
stabilizes. Then the derived f -completion ofM is discrete and coincides with the classical f -adic
completion. In particular, this applies if the module is f -torsion free or if M is Noetherian.

Proof. Up to replacing f with a power of f we can suppose that M [f ] = M [f2]. Therefore

the system · · · → M [f ]
f−→ M [f ]) has all arrows being zero, implying that 0 = lim←−nM [fn] =

R1 lim←−nM [fn], giving the claim following the above discussion. □

We also note the following case where the torsion is really tame.

Lemma A.18 (Bounded torsion in perfect algebras). Let B be perfect in characteristic p and
b ∈ B. Then for any m,n ∈ N all the inclusions

B[b1/p
m
] ⊂ B[b] ⊂ B[bp

n
]

are equalities. In particular B has bounded b-torsion, and the derived b-completion coincides
with the classical completion.

Proof. Reversing the first inclusion is sufficient. Say bx = 0. Then b1/p
m
x1/p

m
= 0. But then

b1/p
m
x = b1/p

m
x1/p

m
x1−1/pm = 0. This concludes. □

Lemma A.19 (Classical vs. derived (2)). An R-module M is classically complete if and only
if it is I-adically separated and derived complete.

More precisely, this is deduced by proving that every Cauchy sequence has a limit in a derived
complete module.

Proof. First, note thatM/In is derived I-complete. Indeed we only need to check thatR lim←−n(· · ·
f−→

M/In
f−→M/In) = Hom(Rf ,M/In) = 0 for any f ∈ I. But as f acts nilpotently on M/In, this

concludes.
Now, if M is classically I-complete, then as M = lim←−nM/InM = R lim←−nM/InM and that

derived complete modules are stable under homotopy limits, we deduce that M is derived I-
complete.

Suppose now that M is derived I-complete. But then π0(ΛIM) = M → lim←−nM/In is
surjective, as explained above. □

Lemma A.20. An object M ∈ D(R) is I-derived complete if and only if πi(M) is a derived
I-complete module for every i ∈ Z.

Proof. Let f ∈ I. Note that Af has a projective resolution of length 2, writing the colimit as a
coequalizer. Therefore we have a spectral sequence degenerating at the E2 page with only two
columns

ExtpR(Af , H
q(M)) =⇒ Extp+q(Af ,M).

Therefore we have exact sequences that gives us the conclusion

0→ Ext1R(Rf , H
p−1(M))→ ExtpR(Rf ,M)→ HomR(Rf , H

p(M)).

□
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Lemma A.21 (Derived complete modules are abelian). The full subcategory of ModR consisting
of derived I-complete modules is an abelian subcategory closed under products, kernels, cokernels
and extensions. Moreover M → π0(ΛIM) is left adjoint to the inclusion of derived complete
modules into R-modules.

Proof. First, note that products are homotopy products so this claim is fine. Let M → N a
map of complete modules. Seen as complex this is therefore derived complete. But then by
Lemma A.20, we get that the kernel and the cokernel of this map is also derived complete. As
for extensions, the long exact sequence for Ext-groups concludes.

If M is discrete, as ΛIM is connective concentrated in homological degrees [0, r], the last
claim follows from the fact that π0 is left adjoint when applied to connective objects. □

Corollary A.22. Suppose that R is derived I-complete. Then any finitely presented module is
also derived complete.

Proof. Closed under finite coproducts=products and cokernels. Finitely presented modules are
cokernels of maps Rm → Rn. □

Corollary A.23 (Quotients). Let N ⊂M be an inclusion of derived I-complete modules. Then
M/N is also I-derived complete. If R is derived complete and J is a derived complete ideal (for
example, if it is finitely presented ideal), then R/J is also derived complete.

Lemma A.24 (Derived Nakayama). Let M ∈ D(R)I−comp. Then M = 0 if and only if M ⊗
R/I = 0. Therefore if M → N is a map of derived I-complete modules, M → N is an
isomorphism if and only if it is after (−)⊗L R/I

Proof. It suffices to show that M ⊗ Kosn(f1, . . . , fr) = 0. But Kosn(f1, . . . , fr) has bounded
I-torsion cohomology. Now [Sta24, Tag 0G1T] concludes.

For the last point, consider fib(M → N)→M → N in D(R)I−comp and apply the preceding
part. □

https://stacks.math.columbia.edu/tag/0G1T
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