
PRESENTABLE CATEGORIES AND ADJOINT FUNCTOR THEOREM

Abstract. The goal is to work out presentable and accessible categories and prove the adjoint
functor theorem.
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This short note is devoted to introduce some useful definitions and working out the usual
adjoint functor theorem. References are [SGA4, Sections I.8, I.9], [AR94, Chapters 1, 2], [KS06,
Section 6] and lowering into 1-categorical versions content of [HTT, Sections 5.4, 5.5]. The goal
is to prove the classical adjoint functor Theorem 3.1.

1. Ind-objects and Pro-objects

In what follows, we work with the notion κ-directed poset to allow after for the good notion
of accessibility. The reader may want to take κ = ℵ0 if he just wants to care about Ind-objects.

1.1. Filtered categories.

Definition 1.1 (Regular cardinal). An infinite cardinal κ is said to be regular if the category
Set<κ has all λ-colimits for all cardinals λ < κ.

In what follows κ denotes a regular cardinal. The following notions make sense for cardinals
that are not regular but they reduce to the regular case.

Example 1.2. The cardinal ℵ0 is regular. Any successor cardinal ℵα+1 is regular. The limit
cardinal ℵω is the union of ℵn for n ∈ ω so it is not regular.

We introduce the notion of Ind-objects and Pro-objects. Given a category C an Ind-object
of C is an object which is the union of objects of C where each object is treated as “compact”
in a certain sense.

1



2 PRESENTABLE CATEGORIES AND ADJOINT FUNCTOR THEOREM

Definition 1.3 (κ-filtered). A category I is κ-filtered if it is non empty and every subcategory
J with |Mor(J)| < κ has a cocone in I. Explicitly,

(1) For every set Ci of strictly less than κ objects of C, there is an object C and a morphism
fi : Ci → C.

(2) For every set of morphisms (gi : C1 → C2) of cardinality strictly less than κ, then there
is an object C and a morphism f : C2 → C such that f ◦ gi is independent of i.

Remark. Note that if κ′ > κ then a κ′-filtered category is κ is filtered.

Remark. In the case κ = ℵ0, were we say that the category is filtered we can reduce to the case
of two objects and a pair of morphisms.

Definition 1.4 (κ-directed). A poset I is said to be κ-directed if it is non-empty and every
subset of cardinality < κ has an upper bound in I.

Remark. Note that a poset is κ-directed set if and only if it is a κ-filtered category when seeing
the poset as a category.

Example 1.5. A poset is ℵ0-directed if and only if it is directed. Indeed it means that any
finite number of elements has an upper-bound. Therefore, the notion of κ-directed is a stronger
condition on a poset comparing to the notion of directed sets, meaning that they are less κ-
directed posets than directed posets. Therefore asking that a category has all κ-directed colimits
is weaker than asking that it has all directed colimits (so that that there are more categories
enjoying this property).

Example 1.6. R with the natural order is ℵ1-directed.
Example 1.7. Main examples of κ-filtered categories are κ-directed sets. In fact, one can
reduce this case as will show Proposition in 1.11. However important natural constructions are
only filtered and not directed so we want to introduce both notions.

The following lemma will turn out to be important in the characterizations of Indκ-objects.

Lemma 1.8. Let J be a category such that |Mor(J)| < κ. Let I be a κ-directed category. Then
for any functor h : I × J → Set the natural map

lim−→
i

lim←−
j

h(i, j)→ lim←−
j

lim−→
i

h(i, j)

is an isomorphism.

Proof. We write the limit has an equalizer. So we want to show that the map

lim−→i

(∏
j h(i, j) ⇒

∏
j1→j2

h(i, j)
) ∏

j lim−→i
h(i, j) ⇒

∏
j1→j2

lim−→i
h(i, j)

is both surjective and injective.
For injectivity, taking two elements in the source, we can suppose that they live at a common

step i using that I is directed say (xi,j) and (yi,j) with i fixed. Having the same image means
that for every j there is a map in I, say i → ij , witnessing the equalization of xi,j and yi,j .
Using that I is κ-filtered, we can first find a common target for all these maps and then we may
further equalize all those maps implying that the two elements are equal on the source.

For surjectivity, take an element on the target. The cardinality of indices i appearing in
it’s image under ⇒ maps is < κ. Therefore we can suppose as I is κ-directed that everything
happens at some step i, which shows surjectivity. □



PRESENTABLE CATEGORIES AND ADJOINT FUNCTOR THEOREM 3

The following concept is motivated by Lemma 1.10 which proof is clear by inspection if
universal properties.

Definition 1.9 (Cofinality). A functor φ : J → I between two filtered categories is cofinal if

(1) For every i ∈ I there is a j ∈ J and a morphism i→ φ(j).
(2) For every pair of morphism f, g : i→ φ(j) there exists a morphism h : j → j′ such that

φ(h) equalizes f and g.

Remark. If φ is fully faithful, then condition (1) implies condition (2).

Lemma 1.10. Let I and J be filtered categories. Let φ : J → I a cofinal functor. Let F : I → C
be a functor. Then the natural map

lim−→
I

F → lim−→
J

(F ◦ φ)

is an isomorphism.

The following proposition is attributed to Deligne in [SGA4, Proposition I.8.1.6]. We copy
the idea of proof and adapt it to the context of κ-filtered categories.

Proposition 1.11. Let I be a small κ-filtered category. Then there exist a κ-directed set J and
a cofinal functor φ : J → I.

Proof. We can suppose that Ob(J) has no upper bound: one can reduce to this case using the
cofinal functor I × κ→ I.

Let J be the poset of subcategories of I of cardinality strictly less than κ who have a unique
(not up to isomorphism) final object. Define φ : J → I by sending a subcategory to it’s final
object.

(1) It is non-empty, as I is non-empty and a single object with only the identity is a
subcategory with a unique final object.

(2) It is κ-directed. Indeed, if we have a subset of J of cardinality strictly less than κ,
then we can find an object where all of the final objects maps and then equalizes those
maps to form a common subcategory with unique final object that contain all considered
sub-categories. (We reduced to the case where Ob(I) has no upper bound).

(3) We now need to show that φ : J → I is cofinal. Note that the existence of an upper
bound for each object follows from (1).

□

Corollary 1.12. A category is κ-filtered complete if and only it is κ-directed complete. A
functor commute with κ-filtered colimits if and only if it commutes to κ-directed colimits.

Corollary 1.13. Let I be a κ-filtered category. There exists a κ-directed set J and a cofinal
functor J → I if and only there is some small κ-filtered category J ′ and a cofinal functor J ′ → I
if and only if Ob(I) has a small cofinal subset.

Definition 1.14. We say that a κ-filtered category I is cofinally small it it satisfies one of the
equivalent conditions of Corollary 1.13.
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1.2. Ind-objects.

Proposition 1.15. Let C be a category. Let F be a presheaf on C. The following are equivalent.

(1) C/F is κ-filtered and cofinally small.
(2) There is a cofinally small κ-filtered category I and a functor C− : I → C such that

F ∼= lim−→I
hCi.

(3) There is a κ-directed category I and a functor C− : I → C such that F ∼= lim−→I
hCi.

If C has colimits of size strictly less than κ,

(4) F turns colimits of size strictly less than κ into limits and C/F is cofinally small.

But (1)-(2)-(3) always imply (4).

Remark. In the case κ = ℵ0, if C admits finite colimits, the (4)-th condition says that F is left
exact.

Proof. The statement (2) and (3) are equivalent due to Proposition 1.11. As lim−→C∈C/F
hC ∼= F ,

we see that (1) implies (2). If (*) holds, the full sub-category spanned by the Ci is cofinal in
C/F , implying (1).

To prove the equivalence with (4) we begin by noting that if the equivalent conditions (1)-(2)-
(3) hold, then F always turns colimits of size strictly less than κ into limits. As representables
functors turn colimits into limits, and that colimits of presheaves are computed pointwise, the
claim follows from Lemma 1.8 as seen below.

F (lim−→
j

cj) = (lim−→
i

hci)(lim−→
j

cj)

= lim−→
i

hci(lim−→
j

cj)

= lim−→
i

lim←−
j

HomPSh(C)(hcj , hci)

= lim←−
j

lim−→
i

HomPSh(C)(hcj , hci)

= lim←−
j

HomPSh(C)(hcj , lim−→
i

hci)

= lim←−
j

HomPSh(C)(hcj , F )

= lim←−
j

F (cj).

If C has colimits of size strictly less than κ and (4) holds, we want to show (1). If we take a set
of objects (Cj)j∈J with J of size strictly less than κ we can consider it’s coproduct C =

⊔
j Cj .

As F turns this colimit into a limit we see that if there is a collection of maps (xj : Cj → F ),
then there is a map (C → F ) which is an upper bound for the family. If we have less than
κ-morphisms that we need to equalize, we can consider the coequlizer in C which will give what
we want using the same argument as above. □

Remark. Representables functors are in Indκ(C) for all κ because C/C has a final object, namely
idC : C → C.
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Remark. In practice we do not like taking Indκ of a category which do not consists of κ-compact
objects. For example Ind(Set) is the category countable systems of sets and where every object
in the image Set → Ind(Set) is therefore treated as compact. For example, in here the system
(N≤k)k∈Z has a natural map tp Z which is not an isomorphism. Namely a map to left hand
side correspond to a map to Z which factors through N≤k for some k, where a map to the right
hand side correspond just to a map to Z.

Definition 1.16 (Indκ-objects). Let C be a category. The category Indκ(C) is defined to be

the full sub-category of Ĉ of objects satisfying one of the equivalent conditions of Proposition
1.15. We say that a functor Cop is Indκ-representable if it belongs to Indκ(C).

1.3. Morphisms of Ind-objects. Let F,G ∈ Indκ(C). Say F = lim−→i
hCi and G = lim−→j

hCj be

realizations of F and G as κ-filtered colimits. Then

HomIndκ(C)(F,G) = lim←−
i

lim−→
j

HomC(ci, cj).

In other words a morphism can be described as a collection of maps fi : ci → cji such that
for any i1 → i2, there is some cji1i2 and morphisms ji1 → ji1i2 and ji2 → ji1i2 such that the
following commutes

ci1 cji1 cji1i2

ci2 cji2

fi1

fi2

where the indicated arrows are those from colimit diagrams. The following lemma says that we
can simplify the situation.

Lemma 1.17 (Morphisms of Ind-objects). Let F = lim−→i∈I hci and G = lim−→j∈J hcj be Indκ-

objects. Let α, β : F → G. Then there is a κ-filtered diagram K and cofinal functors K → I
and K → J with a natural transformation between them such that α and β are induced by
functoriality by the K-colimit.

Proof. Using the morphism (α, β) in Indκ(C) × Indκ(C) = Indκ(C × C), it suffices to show the
claim for a single morphism. Define K as the category of triples (i, j, φ) of an object of I
in J and a morphism φ : ci → cj . The natural transformation is readily given and the claim
follows. □

1.4. Properties of Ind-categories.

Proposition 1.18 (Exactness properties of Indκ(C)). Let C be a category.

(1) In the category Indκ(C), κ-filtered colimits exist and the functor Indκ(C)→ Ĉ commute
to these colimits.

(2) Colimits of size strictly less than κ commute to C → Indκ(C).
(3) Both functors in the composition

C → Indκ(C)→ Ĉ
commute to all limits.

(4) If C is complete, then Indκ(C) is complete.
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(5) If C is equivalent to a small category in which colimits of size strictly less than κ are
representable, then Indκ(C) is complete. In this case

Indκ(C) = Funκ−cont(Cop, Set)

where Funκ−cont denotes functors that turns limits of size strictly less than κ into limits.

Proof. For (1), consider a κ-directed system (Fj) in Indκ(C). We consider the colimit in Ĉ. We
need to show that Clim−→j

FJ
is κ-filtered and is cofinally small because each of these categories are

cofinally small. Note that Ob(C/ lim−→j
FJ

) = lim−→j
Ob(C/Fj

), so the cofinally small claim follows. If

we take a set of objects of Ob(C/ lim−→j
FJ

) of cardinality stricly less than κ, has J is κ-directed,

without loss of generality we can see these objects mapping in a fixed Fj , so the κ-filtered is
also clear because C/Fj

is κ-filtered. The idea for the “coequalizer property” is the same.

For (2), this follows from Lemma 1.8.

In statement (3) the second functor is continuous because limits in Ĉ are computed pointwise
meaning that to show that F → Fi form a limit cone, it suffices to show that Hom(C,F ) →
Hom(C,Fi) is a limit cone in Set for every object C ∈ C. But as C ∈ Indκ(C) this is true by
assumption if F → Fi is a limit cone Indκ(C). Now because the second functor is continuous-
fully faithful and the composition is also continuous it follows that the first is also.

For statement (4), we prove that Indκ(C) has equalizers and products. First for equalizer,
we use Lemma 1.17 to write an equalized diagram as a colimit of equalizer diagram in C. Take
the colimit of the equalizer in C. For products, say (Fj = lim−→ij∈Ij

hcij ) is a collection of κ-

filtered colimits of representables. Define K =
∏

j∈J Ij . Then K is κ-filtered because this is a

component by component check. But then in Ĉ we have

lim−→
(ij)∈K

∏
j∈J

hcij =
∏
J

lim−→
ij∈Ij

hcij ,

because it is a point-wise calculation of sets.
We now prove (5). In this case, we can identify Indκ(C) to functors Cop → Set that turn limit

of size strictly less than κ to limits by Proposition 1.15.(4). But as limits commute with limits,
a limit of such continuous functors is still continuous in a similar way.

□

The following says that Indκ is the κ-filtered cocompletion.

Proposition 1.19 (Universal property of Indκ(C)). Let C be a small category. Given any
functor F : C → D to a category which is κ-filtered complete, then there exist a unique extension
F ′ : Indκ(C) → D up to isomorphism of functors. In other words, there is an equivalence of
categories

Fun(C,D) ∼= Funκ(Indκ(C),D)
where Funκ denote the full subcategory of functors that commutes with κ-filtered colimits.

Proof. Say F ∈ Indκ(C). Recall that functorially F ∼= lim−→C∈C/F hC . Here this colimit κ-filtered

because C is small and by Proposition 1.15. It follows that there is a unique way to extend a
functor defined on C to a functor which preserves κ-filtered colimits. □
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Remark. Be careful, if C is κ-filtered complete, it does not mean that C → Indκ(C) is an
equivalence. This is true if and only if every object of C is κ-compact. But being at the same
time composed uniquely of κ-compact objects and being κ-filtered complete is at the same time
are often incompatible.

1.5. Pro-objects. We now quickly define Pro-objects by op-duality.

Definition 1.20 (Pro-objects). Let C be a category. The category Proκ(C) is defined by
Indκ(Cop)op. We say that a functor C → Set is Proκ-representable if it belongs to Proκ(C).

Example 1.21. The category Pro(FinSet) is equivalent to compact totally discontinous topo-
logical spaces. The category Ind(Pro(FinSet)) is equivalent to locally compact totally disconti-
nous topological spaces.

2. Accessibility and presentability

Definition 2.1 (Accessible functor). Let C and D be categories such that C has all κ-filtered
colimits. Then a functor F : C → D is said to be κ-accessible if F commutes to all κ-filtered
colimits. We say that F is accessible if the above holds for some κ.

Definition 2.2 (Compact objects). Let C be a category. An object C ∈ C is said to be κ-
compact if Hom(C,−) : C → Set is κ-accessible. We say that C is acessible if the the above
holds for some κ.

If hC commutes to filtered colimits , we say that C is of finite presentation, ℵ0-compact or
simply compact.

The following is immediate using Lemma 1.8.

Lemma 2.3. Let J be a category with |Mor(J)| < κ. A colimit over J of κ-compact objects is
still κ-compact.

Remark. In the category of rings or in the category of R-modules for a ring R, the preceding
definition agrees with the usual one. If κ = ℵ1 then R[xi]i∈N is ℵ1-compact. So it extends the
notion of “finitely presented” to a larger notion: objects which have at most κ generators and κ
relations. This can have some pertinence has one may use some categories which are generated
not only but finitely generated objects but only by “bigger” objects. Here is then the definition
that goes along the above philosophy.

Definition 2.4 (Accessible category). A category C is said to be κ-accessible if

(1) It has all κ-filtered colimits.
(2) It is generated by κ-filtered colimits by a small full subcategory of κ-compact objects.

We say that C is accessible if the above hold for some κ.

Remark. Equivalently, C is the κ-filtered cocompletion Indκ(C0) of a small category C0. Note
that representables objects of Indκ(C0) are κ-compact.

Remark. Note that it does not follow that a κ-accessible category is κ′-accessible for κ′ >
κ. Being generated by κ′-colimits is a stronger condition (because there are less κ′-filtered
diagrams). This in fact false! See [AR94, Remark 2.13.(8)]. However, one can find arbitrary
large cardinals κ′ such that an accessible category is κ′-accessible. See [AR94, Lemma 2.14].
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Example 2.5. The category Set is ℵ0-accessible. Indeed any set is the colimit of the filtered
set of it’s finite sets, and finite sets which are in fact exactly the objects of finite presentation
in Set. The same holds for the category of R-algebras or R-modules for any ring R. Any topos
is accessible.

Here is the main really useful definition.

Definition 2.6. A category C is said to be presentable if it is cocomplete and accessible.

Example 2.7. Any topoi is presentable. Any category of R-algebras or of R-modules for R a
(non-commutative) ring.

Recall the following basic lemma.

Lemma 2.8 (Ninja adjoint theorem). Let C be a cocomplete category and A be a small category,

and s : A → C a functor. Then there is a functor s! : Â → C,

Â C

A

s!

s
h•

that extends the functor s, which is left adjoint s! ⊣ s∗ to the functor

s∗ : C Â

C HomC(s(−), C)

Proof. Let s!(F ) = lim−→(x,A)∈A/F
s(A) – this is well defined because C is a cocomplete category

and A/F is small. We therefore have the following sequence of natural isomorphisms in F ∈ Â
and C ∈ C,

HomÂ(F, s
∗(C)) ∼= HomÂ( lim−→

(x,A)∈A/F

hA, s
∗(C))

∼= lim←−
(x,A)∈A/F

HomÂ(hA, s
∗(C))

∼= lim←−
(x,A)∈A/F

HomC(s(A), C)

∼= HomC( lim−→
(x,A)∈A/F

s(A), C) = HomC(s!(F ), C)

And therefore all our claims are shown. □

Note that if C is presentable, and C0 a κ-generating full sub-category of κ-accessible objects,
C0 → Indκ(C0) is a functor like the functor s in the statement of last lemma.

Corollary 2.9. A category is presentable if and only if it is an accessibly embedded full reflexive
sub-category of a free cocompletion of a small category.

Remark. As being κ-accessibly embedded implies being κ′-accessibly embedded for κ′ > κ, the
subtlety mentioned above for accessible categories disappears for presentable categories.
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Remark. This equivalent formulation can be a motivation for this seemingly convoluted defini-
tion: a topos is a category of exactly the same kind, but we ask additionally that the reflector
is left exact.1

Remark. If C is presentable, then there is some cardinal κ such that C = Indκ(C0) for C0 a
full subcategory of κ-compact objects. As C is cocomplete, we can furthermore describe this

category as the full sub-category of Ĉ0 consisting of functors that preserve all κ-small limits
existing in C.

3. Adjoint functor theorems

3.1. Adjoint functor theorem for presentable categories.

Theorem 3.1 (Adjoint functor theorem). Let F : C → D be a functor between presentable
categories. Then

(1) F is a left adjoint if and only if it preserves colimits.
(2) F is a right adjoint if and only if it is accessible and preserves limits.

Remark. The theorem is not op-symmetric because hypothesis are not. There is no reason for
the opposite of a presentable category to be presentable. Statement (1) and statement (2) are
therefore not dual statements. Statement (1) is fairly immediate, but statement (2) is a bit less.

Proof. Let D0, C0 be a full small subcategories of κ-generating κ-compact objects that admit all
κ-small colimits such that F is κ-accessible if we assume hypothesis (2).

We prove (1). Note that if F is a left adjoint, it is cocontinuous, so there is only one direction
to prove. For a fixed D ∈ D we consider GD : Cop0 → Set defined as GD(C) = HomD(F (C), D).
We want to show that this functor turns limits of size strictly less than κ in Cop0 into limits.
This follows from the cocontinuity of F and from Proposition 1.18 (3).

We prove (2). Suppose that F is accessible and preserves limits. Let D ∈ D0. We denote by
GD : C → Set the functor defined by GD(C) = HomD(D,F (C)). Note that as F preserves limits,
is κ-accessible and D is κ-compact, GD is also continuous and preserves κ-filtered colimits; this
the property we are going to use below.

We will show that (C0,GD/)
op is cofinal in (CGD/)

op. Note that both of these categories are
κ-filtered filtered because F preserves limits of size stricly less than κ. Indeed, say (GD → Ci)
is a collection of maps of size stritly less than κ. As

HomD(D,F (
∏
i

Ci)) =
∏
i

HomD(D,Ci)

we have a factorization GD →
∏

iCi → Ci. The equalizer property is proved in the same way.
As for the cofinality claim, as any object C ∈ C is a κ-filtered colimits of κ-compact objects

in C0, say C = lim−→i
C0
i and that GD preserves κ-filtered colimits, we see that if we have a map

GD → C, using compacity

HomD(D,C) = HomD(D, lim−→
i

C0
i ) = lim−→

i

HomD(D, C0
i ).

1Note that a topos is always presentable. It is cocomplete, and if C0 is a site and κ > |Mor(C0)| then any κ-
filtered pointwise colimit of sheaves is again a sheaf. The proof is analogous to the proof that on a quasi-compact
topos, a pointwise filtered limit of sheaves is already a sheaf.
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In other words there is a factorization GD → C0
i → C for some i.

Now, as C is complete one can take the limit lim←−C∈C0,GD/
C in C, and this gives a initial

element of CGD/, i.e. a representing element for GD. Now one can define G : D0 → C which will
extend by continuity to a left adjoint D → C.

If F has a left adjoint G, we want to show that F is accessible. Note that for any object
C ∈ C, the value F (C) ∈ Indκ(D0) = Funκ−cont(Dop

0 ,Set) can be described as the functor
Dop

0 → Set defined by

F (C) = HomC(G(−), C).

As D0 is small the essential image of G in C is small. Therefore as C is generated by colimits by
C0 there is a regular cardinal λ such that each object of the image of G is λ-compact by Lemma
2.3. Therefore, we see that F is λ-accessible. □

Remark. A functor who preserves limits between accessible categories does not necessarily have
a left adjoint. The accessible hypothesis is necessary as shows the following example due to
H. Bass (cf. [SGA4, Remark I.1.8.12.9]). Let I be the large collection of isomorphisms classes
of simple groups. Consider a large collection (Gi)i∈I where each Gi is a representative of an
isomorphism class of simple groups. Let J be the poset of small subsets of I. Let for J ∈ J the
group GJ be the coproduct of all groups Gi for i ∈ J . Then (GJ)J∈J form a projective system
of groups with corresponding functor

F (G) = lim−→
J∈J

HomGrp(GJ , G).

Note that this functor is set valued, because for each group G there is only a small collection of
the simple groups (Gi) who maps non-trivially to G. Even more, for each small subcategory of
the category of groups, only a small collection of the simple groups (Gi) will map non-trivially
to each group of the small subcategory that we considered. In consequence, the restriction of F
to each small subcategory of the category of groups is representable. Therefore F defines a limit
preserving functor Grp → Set, which are both ℵ0-presentable categories. However, one easily
sees that such a functor can not be representable, in particular it can not have a left adjoint.
As a consequence, this functor can not be accessible.

3.2. Pro-adjoint functor theorem. We now prove a variation of the above theorem. Before,
stating it we make the pertinent definition. Recall that Pro(C) are inverse systems (=cofiltered
diagrams) of objects in C with maps being defines as

HomPro(C)((Ci), (Dj)) = lim←−
j

lim−→
i

HomC(Ci, Dj).

Recall that a functor F : C → D can be extend uniquely into an inverse limit preserving
functor Pro(F ) : Pro(C) → Pro(D). This can be seen for example with Proposition 1.19 and
op-duality.

Definition 3.2 (Pro-left adjoint). We say that a functor F : C → D has a pro-left adjoint if
Pro(F ) has a left adjoint.

Remark. This is equivalent to saying that for every D ∈ D the functor C → Set

GD : C 7→ HomC(D,F (C))
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is pro-representable. Also, this is equivalent to the existence of a functor G′ : D → Pro(C) with
a natural isomorphism

HomD(D,F (C)) ∼= HomPro(C)(G
′(D), C).

Theorem 3.3 (Pro-adjoint functor theorem). Let F : C → D be a functor between presentable
categories. Then F has a pro-left adjoint if and only if it is accessible and preserves finite limits.

Proof. The ideas of the proof are actually contained in the proof of Theorem 3.1.
Say C0 and D0 are generating categories of κ-compact objects for C, that we may take con-

taining colimits of size strictly less than κ if needed. Take κ also such that F is κ-accessible
and sends κ-compact objects to κ-compact objects.

As any D ∈ D is κ-filtered colimit of κ-compact objects D0
i , say lim−→i

D0
i = D and that Pro(C)

is cocomplete by Proposition 1.18.(4), it suffices to check that for any D ∈ D0, the functor GD

is pro-representable, indeed

HomD(D,F (−)) = HomD(lim−→
i

D0
i , F (−)) = lim←−

i

HomD(D
0
i , F (−)) = lim−→

i

GD0
i
.

Showing that CGD/ is cofiltered uses that F preserves finite limits, as in the proof of Theorem
3.1. Now if D ∈ D0, then one can show that C0,GD/ is final inside this category using the
accessibility of F again as in the proof of Theorem 3.1. Therefore this shows that GD ∈ Pro(C),
when D ∈ D0.

If there is a pro-adjoint, we want to show that F preserves finite limits and is accessible. We
use

HomD(D,F (C)) ∼= HomPro(C)(G(D), C).

Because C → Pro(C) commute with finite limits by Proposition 1.18.(2), we see that F commutes
with finite limits. For the accessibility, note that for any object C ∈ C, the value F (C) ∈
Indκ(D0) = Funκ−cont(Dop

0 , Set) can be described as the functor Dop
0 → Set defined by

F (C) = HomPro(C)(G(−), C).

Because D0 is small, we can assume that there is a λ such that for any D0 ∈ D0 we have
G(D0) = lim←−i

hCi where Ci is λ-compact. Then for any filtered λ-colimit lim−→j
Cj we have, for

any D0 ∈ D0, using compacity where needed

HomC(D0, F (lim−→
j

Cj)) = F (lim−→
j

Cj)(D0) = HomPro(C)(G(D0), lim−→
j

Cj)

= lim−→
i

HomC(Ci, lim−→
j

Cj)

= lim−→
i

lim−→
j

HomC(Ci, Cj)

= lim−→
j

lim−→
i

HomC(Ci, Cj)

= lim−→
j

HomC(G(D0), Cj)

= lim−→
j

F (Cj)(D0)

= lim−→
j

HomC(D0, F (Cj)) = HomC(D0, lim−→
j

F (Cj))
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□

Example 3.4. Consider a geometric morphism of topoi f : E → E ′. Then f∗ is accessible being
a left adjoint, but it also preserves finite limits by definition. Therefore, there always exist an
exceptional pro-direct image

f! : E → Pro(E ′).
Applying this to the unique geometric morphism f : E → pt gives the pro-π0 of a topos. It
suffices to explain f!1E . We want to see what is the pro-set representing

HomE(1E , f
∗S).

Given a map 1E → f∗S pullbacking f∗s → f∗S for any s ∈ S gives a disjoint decomposition⊔
s Us = 1E by sub-objects. Therefore we see that the pro-system of disjoint decomposition by

sub-objects of 1E is the pro-set representing f!1E . Therefore, we see that if E is locally connected,
implying that every object decomposes a disjoint decomposition of connected subobjects, then
this pro-system is constant and f∗ has a genuine left-adjoint. We see by Theorem 3.1 that this
is the case if and only if f∗ preserves all limits.

Example 3.5. Consider a ring A and f ∈ A. Then j∗ = − ⊗ Af : Mod(A) → Mod(Af ) is
accessible being a left adjoint, and preserves finite limits being exact. In consequence we have
pro-left adjoint

j! : Mod(Af )→ Pro(Mod(A)).

By coccontinuity, we just explain where is sent the generator Af . Take any M ∈ Mod(A). Then

HomMod(Af )(Af ,Mf ) = Mf

= lim−→(M
f−→M

f−→ · · · )

= lim−→(HomMod(A)(A,M))
f−→ HomMod(A)(A,M)

f−→ · · · )

which implies that the pro-system (· · · f−→ A
f−→ A) is the one representing j!A.
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